Root Membrane Ubiquitinome under Short-Term Osmotic Stress

Osmotic stress can be detrimental to plants, whose survival relies heavily on proteomic plasticity. Protein ubiquitination is a central post-translational modification in osmotic-mediated stress. In this study, we used the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-02, Vol.23 (4), p.1956
Hauptverfasser: Berger, Nathalie, Demolombe, Vincent, Hem, Sonia, Rofidal, Valérie, Steinmann, Laura, Krouk, Gabriel, Crabos, Amandine, Nacry, Philippe, Verdoucq, Lionel, Santoni, Véronique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Osmotic stress can be detrimental to plants, whose survival relies heavily on proteomic plasticity. Protein ubiquitination is a central post-translational modification in osmotic-mediated stress. In this study, we used the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectrometry to compile a list of 719 ubiquitinated lysine (K-Ub) residues from 450 Arabidopsis root membrane proteins (58% of which are transmembrane proteins), thereby adding to the database of ubiquitinated substrates in plants. Although no ubiquitin (Ub) motifs could be identified, the presence of acidic residues close to K-Ub was revealed. Our ubiquitinome analysis pointed to a broad role of ubiquitination in the internalization and sorting of cargo proteins. Moreover, the simultaneous proteome and ubiquitinome quantification showed that ubiquitination is mostly not involved in membrane protein degradation in response to short osmotic treatment but that it is putatively involved in protein internalization, as described for the aquaporin PIP2;1. Our in silico analysis of ubiquitinated proteins shows that two E2 Ub-conjugating enzymes, UBC32 and UBC34, putatively target membrane proteins under osmotic stress. Finally, we revealed a positive role for UBC32 and UBC34 in primary root growth under osmotic stress.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23041956