Impact of Immersion Media on Physical Properties and Bioactivity of Epoxy Resin-Based and Bioceramic Endodontic Sealers

This study assessed the effects of immersion media [distilled water (dw), phosphate buffered saline (pbs) and simulated body fluid (sbf)] in the physical properties [fluid uptake/sorption/solubility and alkalinization activity (pH)] and bioactivity of a bioceramic sealer: the BioRoot RCS (BioRoot) (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-02, Vol.14 (4), p.729
Hauptverfasser: Moraes, Thais Gomes de, Menezes, Alan Silva de, Grazziotin-Soares, Renata, Moraes, Rafael Ubaldo Moreira E, Ferreira, Paulo Vitor Campos, Carvalho, Ceci Nunes, Bauer, Jose, Carvalho, Edilausson Moreno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study assessed the effects of immersion media [distilled water (dw), phosphate buffered saline (pbs) and simulated body fluid (sbf)] in the physical properties [fluid uptake/sorption/solubility and alkalinization activity (pH)] and bioactivity of a bioceramic sealer: the BioRoot RCS (BioRoot) (Septodont). The epoxy-resin sealer AH Plus (Dentsply) was used as comparison. Sealers were immersed in dw, pbs and sbf to evaluate the fluid uptake/sorption/solubility and pH's media. Bioactivity was assessed with SEM/EDS, FTIR-ATR and XRD. BioRoot solubility was as follows: sbf > pbs = dw. BioRoot had alkaline pH, and AH Plus had neutral pH, regardless of the medium. BioRoot presented mineral precipitates and peaks indicating hydroxyapatite-precursors in pbs and sbf. AH Plus physical properties were not affected by immersion media and it had no bioactivity. pbs and sbf should be preferred to investigate bioceramic sealers over distilled water, because they were able to highlight the sealer properties. BioRoot maintained the alkaline environment and favored hard tissue deposition.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14040729