Use of advanced neuroimaging and artificial intelligence in meningiomas

Anatomical cross‐sectional imaging methods such as contrast‐enhanced MRI and CT are the standard for the delineation, treatment planning, and follow‐up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non‐invasively provide detailed insights into the molecular and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain pathology (Zurich, Switzerland) Switzerland), 2022-03, Vol.32 (2), p.e13015-n/a
Hauptverfasser: Galldiks, Norbert, Angenstein, Frank, Werner, Jan‐Michael, Bauer, Elena K., Gutsche, Robin, Fink, Gereon R., Langen, Karl‐Josef, Lohmann, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anatomical cross‐sectional imaging methods such as contrast‐enhanced MRI and CT are the standard for the delineation, treatment planning, and follow‐up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non‐invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion‐weighted imaging, diffusion‐weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular‐genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma. Anatomical cross‐sectional imaging methods such as contrast‐enhanced MRI and CT are the standard for the delineation, treatment planning, and follow‐up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non‐invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion‐weighted imaging, diffusion‐weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular‐genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.
ISSN:1015-6305
1750-3639
DOI:10.1111/bpa.13015