Shape transformations of red blood cells in the capillary and their possible connections to oxygen transportation
In this work, a series of numerical simulations have been performed to obtain the steady shapes of red blood cells under a shear force field in the capillary. Two possible classes of steady shapes, the axisymmetric parachute and the non-axisymmetric parachute, are found. If we assume that oxygen dif...
Gespeichert in:
Veröffentlicht in: | Journal of biological physics 2022-03, Vol.48 (1), p.79-92 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a series of numerical simulations have been performed to obtain the steady shapes of red blood cells under a shear force field in the capillary. Two possible classes of steady shapes, the axisymmetric parachute and the non-axisymmetric parachute, are found. If we assume that oxygen diffusion across the red cell membrane is mediated by membrane curvature, it is found that the non-axisymmetric parachute will be more favorable due to its special shape which enables it to have a larger portion of membrane patch capable of releasing oxygen to tissues. |
---|---|
ISSN: | 0092-0606 1573-0689 |
DOI: | 10.1007/s10867-021-09594-5 |