A Single Vaccine Protects against SARS-CoV-2 and Influenza Virus in Mice

The ongoing SARS-CoV-2 pandemic poses a severe global threat to public health, as do influenza viruses and other coronaviruses. Here, we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of virology 2022-02, Vol.96 (4), p.e0157821-e0157821
Hauptverfasser: Cao, Kangli, Wang, Xiang, Peng, Haoran, Ding, Longfei, Wang, Xiangwei, Hu, Yangyang, Dong, Lanlan, Yang, Tianhan, Hong, Xiujing, Xing, Man, Li, Duoduo, Zhu, Cuisong, He, Xiangchuan, Zhao, Chen, Zhao, Ping, Zhou, Dongming, Zhang, Xiaoyan, Xu, Jianqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ongoing SARS-CoV-2 pandemic poses a severe global threat to public health, as do influenza viruses and other coronaviruses. Here, we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generated by fusing the SARS-CoV-2 receptor-binding domain (RBD) to the conserved stalk of H7N9 hemagglutinin (HA). Remarkably, the constructed vaccine effectively induced both SARS-CoV-2-targeting antibodies and anti-influenza antibodies in mice, consequently affording protection from lethal SARS-CoV-2 and H7N9 challenges as well as effective H3N2 control. We propose our AdC68-vectored coronavirus-influenza vaccine as a universal approach toward curbing respiratory virus-causing pandemics. The COVID-19 pandemic exemplifies the severe public health threats of respiratory virus infection and influenza A viruses. The currently envisioned strategy for the prevention of respiratory virus-causing diseases requires the comprehensive administration of vaccines tailored for individual viruses. Here, we present an alternative strategy by designing chimpanzee adenovirus 68-based vaccines which target both the SARS-CoV-2 receptor-binding-domain and the conserved stalk of influenza hemagglutinin. When tested in mice, this strategy attained potent neutralizing antibodies against wild-type SARS-CoV-2 and its emerging variants, enabling an effective protection against lethal SARS-CoV-2 challenge. Notably, it also provided complete protection from lethal H7N9 challenge and efficient control of H3N2-induced morbidity. Our study opens a new avenue to universally curb respiratory virus infection by vaccination.
ISSN:0022-538X
1098-5514
DOI:10.1128/JVI.01578-21