Stability analysis based parameter tuning of Social Group Optimization

Swarm-based optimization algorithms have been popularly used these days for optimization of various real world problems but sometimes it becomes hard to estimate the associated characteristics due to their stochastic nature. To ensure a steady performance of these techniques, it is essential to have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex & Intelligent Systems 2022-08, Vol.8 (4), p.3409-3435
Hauptverfasser: Jena, Junali Jasmine, Dash, Samarendra Chandan Bindu, Satapathy, Suresh Chandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Swarm-based optimization algorithms have been popularly used these days for optimization of various real world problems but sometimes it becomes hard to estimate the associated characteristics due to their stochastic nature. To ensure a steady performance of these techniques, it is essential to have knowledge about the range of variables, in which a particular algorithm always provides stable performance and performing stability analysis of an algorithm can help in providing some knowledge regarding the same. Many researchers have performed the stability analysis of several optimization algorithms and analyzed their behavior. Social Group Optimization (SGO) is a newly developed algorithm which has been proven to yield promising results when applied to many real world problems but in literature no work can be found on stability analysis of SGO. In this paper, Von Neumann stability analysis approach has been used for performing stability analysis of Social Group Optimization (SGO) to analyze the behavior of its algorithmic parameters and estimate the range in which they always give stable convergence. The results obtained have been supported by sufficient experimental analysis and simulated using eight benchmark function suite along with their shifted and rotated variations which prove that the algorithm performs better within the stable range and hence convergence is ensured.
ISSN:2199-4536
2198-6053
DOI:10.1007/s40747-022-00684-y