SPARC-related modular calcium binding 1 regulates aortic valve calcification by disrupting BMPR-II/p-p38 signalling

Abstract Aims Aortic valve calcification is more prevalent in chronic kidney disease accompanied by hypercalcemia. Secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding 1 (SMOC1) is a regulator of BMP2 signalling, but the role of SMOC1 in aortic valve calcification und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2022-02, Vol.118 (3), p.913-928
Hauptverfasser: Wang, Yaqing, Gu, Jia, Du, Anning, Zhang, Siqi, Deng, Mengqing, Zhao, Rong, Lu, Yan, Ji, Yue, Shao, Yongfeng, Sun, Wei, Kong, Xiangqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Aims Aortic valve calcification is more prevalent in chronic kidney disease accompanied by hypercalcemia. Secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding 1 (SMOC1) is a regulator of BMP2 signalling, but the role of SMOC1 in aortic valve calcification under different conditions has not been studied. This study aimed to investigate the roles of SMOC1 in aortic valve calcification under normal and high calcium conditions, focusing on the effects on aortic valve interstitial cells (AVICs). Methods and results SMOC1 was expressed by aortic valve endothelial cells and secreted into the extracellular matrix in non-calcific valves and downregulated in calcific aortic valves. In vitro studies demonstrated that HUVEC secreted SMOC1 could enter the cytoplasm of AVICs. Overexpression of SMOC1 attenuated warfarin-induced AVIC calcification but promoted high calcium/phosphate or vitamin D-induced AVIC and aortic valve calcification by regulating BMP2 signalling both in vitro and in vivo. Co-immunoprecipitation revealed that SMOC1 binds to BMP receptor II (BMPR-II) and inhibits BMP2-induced phosphorylation of p38 (p-p38) via amino acids 372–383 of its EF-hand calcium-binding domain. Inhibition of p-p38 by the p38 inhibitor SB203580 blocked the effects of SMOC1 on BMP2 signalling and AVIC calcification induced by high calcium/phosphate medium. In high-calcium-treated AVICs, SMOC1 lost its ability to bind to BMPR-II, but not to caveolin-1, promoting p-p38 and cell apoptosis due to increased expression of BMPR-II and enhanced endocytosis. Conclusions These observations support that SMOC1 works as a dual-directional modulator of AVIC calcification by regulating p38-dependent BMP2 signalling transduction according to different extracellular calcium concentrations. Graphical Abstract
ISSN:0008-6363
1755-3245
DOI:10.1093/cvr/cvab107