Biphasic Properties of PVAH (Polyvinyl Alcohol Hydrogel) Reflecting Biomechanical Behavior of the Nucleus Pulposus of the Human Intervertebral Disc
PVAH is a mixture of solid and fluid, but its mechanical behavior has usually been described using solid material models. The purpose of this study was to obtain material properties that can reflect the mechanical behavior of polyvinyl alcohol hydrogel (PVAH) using finite element analysis, a biphasi...
Gespeichert in:
Veröffentlicht in: | Materials 2022-01, Vol.15 (3), p.1125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PVAH is a mixture of solid and fluid, but its mechanical behavior has usually been described using solid material models. The purpose of this study was to obtain material properties that can reflect the mechanical behavior of polyvinyl alcohol hydrogel (PVAH) using finite element analysis, a biphasic continuum model, and to optimize the composition ratio of PVAH to replace the nucleus pulposus (NP) of the human intervertebral disc. Six types of PVAH specimens (3, 5, 7, 10, 15, 20 wt%) were prepared, then unconfined compression experiments were performed to acquire their material properties using the Holmes-Mow biphasic model. With an increasing weight percentage of PVA in PVAH, the Young's modulus increased while the permeability parameter decreased. The Young's modulus and permeability parameter were similar to those of the NP at 15 wt% and 20 wt%. The range of motion, facet joint force, and NP pressures measured from dynamic motional analysis of the lumbar segments with the NP model also exhibited similar values to those with 15~20 wt% PVAH models. Considering the structural stability and pain of the lumbar segments, it appears that 20 wt% PVAH is most suitable for replacing the NP. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma15031125 |