Comparison of Microstructure, Texture, and Mechanical Properties of TZ61 and AZ61 Mg Alloys Processed by Differential Speed Rolling

In this work, the comparison of microstructure, texture, and mechanical properties of the newly developed TZ61 (Mg-6Sn-1Zn) alloy with the commercially available AZ61 (Mg-6Al-1Zn) has been presented. Both analyzed Mg alloys were processed by conventional symmetric and asymmetric rolling (i.e., Diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-01, Vol.15 (3), p.785
Hauptverfasser: Majchrowicz, Kamil, Adamczyk-Cieślak, Bogusława, Chromiński, Witold, Jóźwik, Paweł, Pakieła, Zbigniew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the comparison of microstructure, texture, and mechanical properties of the newly developed TZ61 (Mg-6Sn-1Zn) alloy with the commercially available AZ61 (Mg-6Al-1Zn) has been presented. Both analyzed Mg alloys were processed by conventional symmetric and asymmetric rolling (i.e., Differential Speed Rolling-DSR). The microstructure and texture were examined by EBSD and XRD, whereas the mechanical behavior was investigated by uniaxial tensile tests. DSR processing led to more effective grain refinement of both TZ61 and AZ61 sheets. However, a high fraction of Mg Sn phase precipitates in the TZ61 sheets hindered grain growth what resulted in their smaller grain size as compared to AZ61 sheets. DSR processing lowered also the basal texture intensity in the TZ61 and AZ61 sheets. A unique basal poles splitting was observed for the as-rolled TZ61 alloy, while AZ61 alloy exhibited a typical single-peak basal texture. Finally, the reduced grain size and weakened basal texture by DSR processing caused increase of plasticity of the annealed TZ61 and AZ61 sheets. Nevertheless, the annealed AZ61 sheets showed higher uniform elongation and strength (as compared to TZ61 ones), which has been attributed to their significantly lower texture intensity and greater ability to strain hardening.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15030785