The Deubiquitinase OTUB1 Is a Key Regulator of Energy Metabolism
Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We prev...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-01, Vol.23 (3), p.1536 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of OTUB1 in adult mice (
iKO) elevated energy expenditure, reduced age-dependent body weight gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition,
deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and
iKO mice presented with increased AKT phosphorylation following acute insulin administration combined with insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23031536 |