The Impact of Background-Level Carboxylated Single-Walled Carbon Nanotubes (SWCNTs-COOH) on Induced Toxicity in Caenorhabditis elegans and Human Cells
Single-walled carbon nanotubes (SWCNTs) are widely utilized for industrial, biomedical, and environmental purposes. The toxicity of Carboxylated SWCNTs (SWCNTs-COOH) in in vivo models, particularly ( ), and in vitro human cells is still unclear. In this study, was used to study the effects of SWCNTs...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2022-01, Vol.19 (3), p.1218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-walled carbon nanotubes (SWCNTs) are widely utilized for industrial, biomedical, and environmental purposes. The toxicity of Carboxylated SWCNTs (SWCNTs-COOH) in in vivo models, particularly
(
), and in vitro human cells is still unclear. In this study,
was used to study the effects of SWCNTs-COOH on lethality, lifespan, growth, reproduction, locomotion, reactive oxygen species (ROS) generation, and the antioxidant system. Our data show that exposure to ≥1 μg·L
SWCNTs-COOH could induce toxicity in nematodes that affects lifespan, growth, reproduction, and locomotion behavior. Moreover, the exposure of nematodes to SWCNTs-COOH induced ROS generation and the alteration of antioxidant gene expression. SWCNTs-COOH induced nanotoxic effects at low dose of 0.100 or 1.00 μg·L
, particularly for the expression of antioxidants (SOD-3, CTL-2 and CYP-35A2). Similar nanotoxic effects were found in human cells. A low dose of SWCNTs-COOH induced ROS generation and increased the expression of catalase, MnSOD, CuZnSOD, and SOD-2 mRNA but decreased the expression of GPX-2 and GPX-3 mRNA in human monocytes. These findings reveal that background-level SWCNTs-COOH exerts obvious adverse effects, and
is a sensitive in vivo model that can be used for the biological evaluation of the toxicity of nanomaterials. |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph19031218 |