IL12 integrated into the CAR exodomain converts CD8+ T cells to poly-functional NK-like cells with superior killing of antigen-loss tumors

Chimeric antigen receptor (CAR)-redirected T cell therapy often fails to control tumors in the long term due to selecting cancer cells that downregulated or lost CAR targeted antigen. To reprogram the functional capacities specifically of engineered CAR T cells, we inserted IL12 into the extracellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2022-02, Vol.30 (2), p.593-605
Hauptverfasser: Hombach, Andreas, Barden, Markus, Hannappel, Lisa, Chmielewski, Markus, Rappl, Gunter, Sachinidis, Agapios, Abken, Hinrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chimeric antigen receptor (CAR)-redirected T cell therapy often fails to control tumors in the long term due to selecting cancer cells that downregulated or lost CAR targeted antigen. To reprogram the functional capacities specifically of engineered CAR T cells, we inserted IL12 into the extracellular moiety of a CD28-ζ CAR; both the CAR endodomain and IL12 were functionally active, as indicated by antigen-redirected effector functions and STAT4 phosphorylation, respectively. The IL12-CAR reprogrammed CD8+ T cells toward a so far not recognized natural killer (NK) cell-like signature and a CD94+CD56+CD62Lhigh phenotype closely similar, but not identical, to NK and cytokine induced killer (CIK) cells. In contrast to conventional CAR T cells, IL12-CAR T cells acquired antigen-independent, human leukocyte antigen E (HLA-E) restricted cytotoxic capacities eliminating antigen-negative cancer cells in addition to eliminating cancer cells with CAR cognate antigen. Simultaneous signaling through both the CAR endodomain and IL12 were required for inducing maximal NK-like cytotoxicity; adding IL12 to conventional CAR T cells was not sufficient. Antigen-negative tumors were attacked by IL12-CAR T cells, but not by conventional CAR T cells. Overall, we present a prototype of a new family of CARs that augments tumor recognition and elimination through expanded functional capacities by an appropriate cytokine integrated into the CAR exodomain. [Display omitted] A novel CAR design integrates the IL12 cytokine into the CAR exodomain in order to reprogram T cell function toward poly-functional NK-like cells capable of both CAR-redirected antigen-specific killing and, moreover, IL12 induced antigen-independent killing of those cancer cells that lost CAR cognate antigen.
ISSN:1525-0016
1525-0024
DOI:10.1016/j.ymthe.2021.10.011