Effect of nano-conversion on morphological, rheological and thermal properties of barley starch
The aim of the present study was to synthesize biodegradable starch nanoparticles (SNP’s) from a renewable source like barley starch and to characterize for morphological, crystalline, thermal, and rheological properties. Acid hydrolysis transformed A+V-type round or disc-shaped native starch (NS) g...
Gespeichert in:
Veröffentlicht in: | Journal of food science and technology 2022-02, Vol.59 (2), p.467-477 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the present study was to synthesize biodegradable starch nanoparticles (SNP’s) from a renewable source like barley starch and to characterize for morphological, crystalline, thermal, and rheological properties. Acid hydrolysis transformed A+V-type round or disc-shaped native starch (NS) granules with an average width of 10 µm and the average length of 22 µm into round or irregular shaped A-type SNP’s with an average size of 64 nm with the crystallinity enhanced from 41.75 to 48.08%. The zeta potential of NS and SNP’s was − 17.7 and − 21.4 nm, respectively, with the higher stability of SNP’s. The gelatinization temperature increased while melting decreased after nano conversion of barley starch. The storage and loss moduli of 12 and 15% suspension of SNP’s remained unchanged with a change in angular frequency (0.1–10 rad-s), which indicated a greater tendency to recover after deformation, while 20% SNP’s suspension behaved like a viscous fluid. The flow behavior test demonstrated a shear-thinning behavior of SNP’s suspension. |
---|---|
ISSN: | 0022-1155 0975-8402 |
DOI: | 10.1007/s13197-021-05029-0 |