Base-resolution models of transcription-factor binding reveal soft motif syntax
The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)–nexus binding profiles of pluri...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2021-03, Vol.53 (3), p.354-366 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 366 |
---|---|
container_issue | 3 |
container_start_page | 354 |
container_title | Nature genetics |
container_volume | 53 |
creator | Avsec, Žiga Weilert, Melanie Shrikumar, Avanti Krueger, Sabrina Alexandari, Amr Dalal, Khyati Fropf, Robin McAnany, Charles Gagneur, Julien Kundaje, Anshul Zeitlinger, Julia |
description | The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)–nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using clustered regularly interspaced short palindromic repeat (CRISPR)-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data.
BPNet is an interpretable deep learning tool that predicts transcription-factor binding profiles from DNA sequence at base-pair resolution, enabling the identification of motifs and the regulatory syntax underlying transcription-factor binding. |
doi_str_mv | 10.1038/s41588-021-00782-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8812996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507562270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-66173e430f318c470fdb7ddd662bea1bdb33386bf4d3b07022d816a137c580153</originalsourceid><addsrcrecordid>eNp9kT9vFDEQxS0UREKSL5ACrZSGxjBje21fEylE_JMipYHa8q7tw9Gefdi7Efn2-LiQAAWVrZnfvHmjR8gZwhsErt9Wgb3WFBhSAKUZlc_IEfZCUlSoD9ofJFIBXB6Sl7XeAqAQoF-QQ84lcMb5Ebl5Z6unxdc8LXPMqdtk56fa5dDNxaY6lrjd1Wmw45xLN8TkYlp3xd95O3U1h7mNzDF09T7N9scJeR7sVP3pw3tMvn54_-XqE72--fj56vKajkKJmUqJinvBIXDUrQTBDco5JyUbvMXBDZxzLYcgHB9AAWNOo7TI1dhrwJ4fk4u97nYZNt6NPjW7k9mWuLHl3mQbzd-dFL-Zdb4zWiNbrWQTeP0gUPL3xdfZbGId_TTZ5PNSDRMrXAlUAht6_g96m5eS2nmG9aB6yZiCRrE9NZZca_Hh0QyC2eVl9nmZlpf5lZfZuXj15xmPI78DagDfA7W10tqXp93_kf0JWtKhfA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507562270</pqid></control><display><type>article</type><title>Base-resolution models of transcription-factor binding reveal soft motif syntax</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Avsec, Žiga ; Weilert, Melanie ; Shrikumar, Avanti ; Krueger, Sabrina ; Alexandari, Amr ; Dalal, Khyati ; Fropf, Robin ; McAnany, Charles ; Gagneur, Julien ; Kundaje, Anshul ; Zeitlinger, Julia</creator><creatorcontrib>Avsec, Žiga ; Weilert, Melanie ; Shrikumar, Avanti ; Krueger, Sabrina ; Alexandari, Amr ; Dalal, Khyati ; Fropf, Robin ; McAnany, Charles ; Gagneur, Julien ; Kundaje, Anshul ; Zeitlinger, Julia</creatorcontrib><description>The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)–nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using clustered regularly interspaced short palindromic repeat (CRISPR)-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data.
BPNet is an interpretable deep learning tool that predicts transcription-factor binding profiles from DNA sequence at base-pair resolution, enabling the identification of motifs and the regulatory syntax underlying transcription-factor binding.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-021-00782-6</identifier><identifier>PMID: 33603233</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45/100 ; 45/15 ; 45/23 ; 45/70 ; 631/114 ; 631/1647/2217/2088 ; 631/208/212 ; Agriculture ; Animal Genetics and Genomics ; Animals ; Binding ; Binding Sites ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chromatin ; Chromatin Immunoprecipitation ; Clustered Regularly Interspaced Short Palindromic Repeats ; Computational Biology - methods ; CRISPR ; Deep Learning ; Deoxyribonucleic acid ; DNA ; Experiments ; Gene Function ; Genomes ; Genomics ; Human Genetics ; Immunoprecipitation ; Mice ; Mouse Embryonic Stem Cells - physiology ; Mutation ; Nanog Homeobox Protein - metabolism ; Neural networks ; Neural Networks, Computer ; Nucleotide Motifs ; Nucleotide sequence ; Octamer Transcription Factor-3 - metabolism ; Periodicity ; Pluripotency ; Proteins ; Regulatory sequences ; Reproducibility of Results ; SOXB1 Transcription Factors - metabolism ; Stem cells ; Syntax ; Transcription Factors - metabolism</subject><ispartof>Nature genetics, 2021-03, Vol.53 (3), p.354-366</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>Copyright Nature Publishing Group Mar 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-66173e430f318c470fdb7ddd662bea1bdb33386bf4d3b07022d816a137c580153</citedby><cites>FETCH-LOGICAL-c474t-66173e430f318c470fdb7ddd662bea1bdb33386bf4d3b07022d816a137c580153</cites><orcidid>0000-0002-7790-8936 ; 0000-0003-3084-2287 ; 0000-0002-8924-8365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-021-00782-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-021-00782-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33603233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avsec, Žiga</creatorcontrib><creatorcontrib>Weilert, Melanie</creatorcontrib><creatorcontrib>Shrikumar, Avanti</creatorcontrib><creatorcontrib>Krueger, Sabrina</creatorcontrib><creatorcontrib>Alexandari, Amr</creatorcontrib><creatorcontrib>Dalal, Khyati</creatorcontrib><creatorcontrib>Fropf, Robin</creatorcontrib><creatorcontrib>McAnany, Charles</creatorcontrib><creatorcontrib>Gagneur, Julien</creatorcontrib><creatorcontrib>Kundaje, Anshul</creatorcontrib><creatorcontrib>Zeitlinger, Julia</creatorcontrib><title>Base-resolution models of transcription-factor binding reveal soft motif syntax</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)–nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using clustered regularly interspaced short palindromic repeat (CRISPR)-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data.
BPNet is an interpretable deep learning tool that predicts transcription-factor binding profiles from DNA sequence at base-pair resolution, enabling the identification of motifs and the regulatory syntax underlying transcription-factor binding.</description><subject>45/100</subject><subject>45/15</subject><subject>45/23</subject><subject>45/70</subject><subject>631/114</subject><subject>631/1647/2217/2088</subject><subject>631/208/212</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Computational Biology - methods</subject><subject>CRISPR</subject><subject>Deep Learning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Experiments</subject><subject>Gene Function</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Immunoprecipitation</subject><subject>Mice</subject><subject>Mouse Embryonic Stem Cells - physiology</subject><subject>Mutation</subject><subject>Nanog Homeobox Protein - metabolism</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nucleotide Motifs</subject><subject>Nucleotide sequence</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>Periodicity</subject><subject>Pluripotency</subject><subject>Proteins</subject><subject>Regulatory sequences</subject><subject>Reproducibility of Results</subject><subject>SOXB1 Transcription Factors - metabolism</subject><subject>Stem cells</subject><subject>Syntax</subject><subject>Transcription Factors - metabolism</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kT9vFDEQxS0UREKSL5ACrZSGxjBje21fEylE_JMipYHa8q7tw9Gefdi7Efn2-LiQAAWVrZnfvHmjR8gZwhsErt9Wgb3WFBhSAKUZlc_IEfZCUlSoD9ofJFIBXB6Sl7XeAqAQoF-QQ84lcMb5Ebl5Z6unxdc8LXPMqdtk56fa5dDNxaY6lrjd1Wmw45xLN8TkYlp3xd95O3U1h7mNzDF09T7N9scJeR7sVP3pw3tMvn54_-XqE72--fj56vKajkKJmUqJinvBIXDUrQTBDco5JyUbvMXBDZxzLYcgHB9AAWNOo7TI1dhrwJ4fk4u97nYZNt6NPjW7k9mWuLHl3mQbzd-dFL-Zdb4zWiNbrWQTeP0gUPL3xdfZbGId_TTZ5PNSDRMrXAlUAht6_g96m5eS2nmG9aB6yZiCRrE9NZZca_Hh0QyC2eVl9nmZlpf5lZfZuXj15xmPI78DagDfA7W10tqXp93_kf0JWtKhfA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Avsec, Žiga</creator><creator>Weilert, Melanie</creator><creator>Shrikumar, Avanti</creator><creator>Krueger, Sabrina</creator><creator>Alexandari, Amr</creator><creator>Dalal, Khyati</creator><creator>Fropf, Robin</creator><creator>McAnany, Charles</creator><creator>Gagneur, Julien</creator><creator>Kundaje, Anshul</creator><creator>Zeitlinger, Julia</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7790-8936</orcidid><orcidid>https://orcid.org/0000-0003-3084-2287</orcidid><orcidid>https://orcid.org/0000-0002-8924-8365</orcidid></search><sort><creationdate>20210301</creationdate><title>Base-resolution models of transcription-factor binding reveal soft motif syntax</title><author>Avsec, Žiga ; Weilert, Melanie ; Shrikumar, Avanti ; Krueger, Sabrina ; Alexandari, Amr ; Dalal, Khyati ; Fropf, Robin ; McAnany, Charles ; Gagneur, Julien ; Kundaje, Anshul ; Zeitlinger, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-66173e430f318c470fdb7ddd662bea1bdb33386bf4d3b07022d816a137c580153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>45/100</topic><topic>45/15</topic><topic>45/23</topic><topic>45/70</topic><topic>631/114</topic><topic>631/1647/2217/2088</topic><topic>631/208/212</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Computational Biology - methods</topic><topic>CRISPR</topic><topic>Deep Learning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Experiments</topic><topic>Gene Function</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Immunoprecipitation</topic><topic>Mice</topic><topic>Mouse Embryonic Stem Cells - physiology</topic><topic>Mutation</topic><topic>Nanog Homeobox Protein - metabolism</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nucleotide Motifs</topic><topic>Nucleotide sequence</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>Periodicity</topic><topic>Pluripotency</topic><topic>Proteins</topic><topic>Regulatory sequences</topic><topic>Reproducibility of Results</topic><topic>SOXB1 Transcription Factors - metabolism</topic><topic>Stem cells</topic><topic>Syntax</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avsec, Žiga</creatorcontrib><creatorcontrib>Weilert, Melanie</creatorcontrib><creatorcontrib>Shrikumar, Avanti</creatorcontrib><creatorcontrib>Krueger, Sabrina</creatorcontrib><creatorcontrib>Alexandari, Amr</creatorcontrib><creatorcontrib>Dalal, Khyati</creatorcontrib><creatorcontrib>Fropf, Robin</creatorcontrib><creatorcontrib>McAnany, Charles</creatorcontrib><creatorcontrib>Gagneur, Julien</creatorcontrib><creatorcontrib>Kundaje, Anshul</creatorcontrib><creatorcontrib>Zeitlinger, Julia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avsec, Žiga</au><au>Weilert, Melanie</au><au>Shrikumar, Avanti</au><au>Krueger, Sabrina</au><au>Alexandari, Amr</au><au>Dalal, Khyati</au><au>Fropf, Robin</au><au>McAnany, Charles</au><au>Gagneur, Julien</au><au>Kundaje, Anshul</au><au>Zeitlinger, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Base-resolution models of transcription-factor binding reveal soft motif syntax</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>53</volume><issue>3</issue><spage>354</spage><epage>366</epage><pages>354-366</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)–nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using clustered regularly interspaced short palindromic repeat (CRISPR)-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data.
BPNet is an interpretable deep learning tool that predicts transcription-factor binding profiles from DNA sequence at base-pair resolution, enabling the identification of motifs and the regulatory syntax underlying transcription-factor binding.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33603233</pmid><doi>10.1038/s41588-021-00782-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7790-8936</orcidid><orcidid>https://orcid.org/0000-0003-3084-2287</orcidid><orcidid>https://orcid.org/0000-0002-8924-8365</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2021-03, Vol.53 (3), p.354-366 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8812996 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 45/100 45/15 45/23 45/70 631/114 631/1647/2217/2088 631/208/212 Agriculture Animal Genetics and Genomics Animals Binding Binding Sites Biomedical and Life Sciences Biomedicine Cancer Research Chromatin Chromatin Immunoprecipitation Clustered Regularly Interspaced Short Palindromic Repeats Computational Biology - methods CRISPR Deep Learning Deoxyribonucleic acid DNA Experiments Gene Function Genomes Genomics Human Genetics Immunoprecipitation Mice Mouse Embryonic Stem Cells - physiology Mutation Nanog Homeobox Protein - metabolism Neural networks Neural Networks, Computer Nucleotide Motifs Nucleotide sequence Octamer Transcription Factor-3 - metabolism Periodicity Pluripotency Proteins Regulatory sequences Reproducibility of Results SOXB1 Transcription Factors - metabolism Stem cells Syntax Transcription Factors - metabolism |
title | Base-resolution models of transcription-factor binding reveal soft motif syntax |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Base-resolution%20models%20of%20transcription-factor%20binding%20reveal%20soft%20motif%20syntax&rft.jtitle=Nature%20genetics&rft.au=Avsec,%20%C5%BDiga&rft.date=2021-03-01&rft.volume=53&rft.issue=3&rft.spage=354&rft.epage=366&rft.pages=354-366&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-021-00782-6&rft_dat=%3Cproquest_pubme%3E2507562270%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507562270&rft_id=info:pmid/33603233&rfr_iscdi=true |