Base-resolution models of transcription-factor binding reveal soft motif syntax

The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)–nexus binding profiles of pluri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2021-03, Vol.53 (3), p.354-366
Hauptverfasser: Avsec, Žiga, Weilert, Melanie, Shrikumar, Avanti, Krueger, Sabrina, Alexandari, Amr, Dalal, Khyati, Fropf, Robin, McAnany, Charles, Gagneur, Julien, Kundaje, Anshul, Zeitlinger, Julia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)–nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using clustered regularly interspaced short palindromic repeat (CRISPR)-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data. BPNet is an interpretable deep learning tool that predicts transcription-factor binding profiles from DNA sequence at base-pair resolution, enabling the identification of motifs and the regulatory syntax underlying transcription-factor binding.
ISSN:1061-4036
1546-1718
DOI:10.1038/s41588-021-00782-6