Effective treatment of imbalanced datasets in health care using modified SMOTE coupled with stacked deep learning algorithms

One of the prominent uses of Predictive Analytics is Health care for more accurate predictions based on proper analysis of cumulative datasets. Often times the datasets are quite imbalanced and sampling techniques like Synthetic Minority Oversampling Technique (SMOTE) give only moderate accuracy in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2023, Vol.13 (3), p.1829-1840
Hauptverfasser: Sowjanya, A. Mary, Mrudula, Owk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the prominent uses of Predictive Analytics is Health care for more accurate predictions based on proper analysis of cumulative datasets. Often times the datasets are quite imbalanced and sampling techniques like Synthetic Minority Oversampling Technique (SMOTE) give only moderate accuracy in such cases. To overcome this problem, a two-step approach has been proposed. In the first step, SMOTE is modified to reduce the class imbalance in terms of Distance-based SMOTE (D-SMOTE) and Bi-phasic SMOTE (BP-SMOTE) which were then coupled with selective classifiers for prediction. An increase in accuracy is noted for both BP-SMOTE and D-SMOTE compared to basic SMOTE. In the second step, Machine learning, Deep Learning and Ensemble algorithms were used to develop a Stacking Ensemble Framework which showed a significant increase in accuracy for Stacking compared to individual machine learning algorithms like Decision Tree, Naïve Bayes, Neural Networks and Ensemble techniques like Voting, Bagging and Boosting. Two different methods have been developed by combing Deep learning with Stacking approach namely Stacked CNN and Stacked RNN which yielded significantly higher accuracy of 96–97% compared to individual algorithms. Framingham dataset is used for data sampling, Wisconsin Hospital data of Breast Cancer study is used for Stacked CNN and Novel Coronavirus 2019 dataset relating to forecasting COVID-19 cases, is used for Stacked RNN.
ISSN:2190-5509
2190-5517
DOI:10.1007/s13204-021-02063-4