An automated nucleic acid detection platform using digital microfluidics with an optimized Cas12a system

Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Chemistry 2022-03, Vol.65 (3), p.630-640
Hauptverfasser: Sun, Zhen, Lin, Kang-Feng, Zhao, Ze-Hang, Wang, Yang, Hong, Xin-Xin, Guo, Jian-Guang, Ruan, Qing-Yu, Lu, Lian-Yu, Li, Xiao, Zhang, Rui, Yang, Chao-Yong, Li, Bo-An
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Outbreaks of both influenza virus and the novel coronavirus SARS-CoV-2 are serious threats to human health and life. It is very important to establish a rapid, accurate test with large-scale detection potential to prevent the further spread of the epidemic. An optimized RPA-Cas12a-based platform combined with digital microfluidics (DMF), the RCD platform, was established to achieve the automated, rapid detection of influenza viruses and SARS-CoV-2. The probe in the RPA-Cas12a system was optimized to produce maximal fluorescence to increase the amplification signal. The reaction droplets in the platform were all at the microliter level and the detection could be accomplished within 30 min due to the effective mixing of droplets by digital microfluidic technology. The whole process from amplification to recognition is completed in the chip, which reduces the risk of aerosol contamination. One chip can contain multiple detection reaction areas, offering the potential for customized detection. The RCD platform demonstrated a high level of sensitivity, specificity (no false positives or negatives), speed (≤30 min), automation and multiplexing. We also used the RCD platform to detect nucleic acids from influenza patients and COVID-19 patients. The results were consistent with the findings of qPCR. The RCD platform is a one-step, rapid, highly sensitive and specific method with the advantages of digital microfluidic technology, which circumvents the shortcomings of manual operation. The development of the RCD platform provides potential for the isothermal automatic detection of nucleic acids during epidemics.
ISSN:1674-7291
1869-1870
DOI:10.1007/s11426-021-1169-1