Comparing Mammographic Density Assessed by Digital Breast Tomosynthesis or Digital Mammography: The Breast Cancer Surveillance Consortium

Background Consistency in reporting Breast Imaging Reporting and Data System (BI-RADS) breast density on mammograms is important because breast density is used for breast cancer risk assessment and is reported directly to women and clinicians to inform decisions about supplemental screening. Purpose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiology 2022-02, Vol.302 (2), p.286-292
Hauptverfasser: Tice, Jeffrey A, Gard, Charlotte C, Miglioretti, Diana L, Sprague, Brian L, Tosteson, Anna N A, Joe, Bonnie N, Ho, Thao-Quyen H, Kerlikowske, Karla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Consistency in reporting Breast Imaging Reporting and Data System (BI-RADS) breast density on mammograms is important because breast density is used for breast cancer risk assessment and is reported directly to women and clinicians to inform decisions about supplemental screening. Purpose To assess the consistency of BI-RADS density reporting between digital breast tomosynthesis (DBT) and digital mammography (DM) and evaluate density as a breast cancer risk factor when assessed using DM versus DBT. Materials and Methods The Breast Cancer Surveillance Consortium is a prospective cohort study of women undergoing mammography with DM or DBT. This secondary analysis included women aged 40-79 years who underwent at least two screening mammography examinations less than 36 months apart. Percentage agreement and κ statistic were estimated for pairs of BI-RADS density assessments. Cox proportional hazards regression was used to calculate hazard ratios (HRs) of breast density as a risk factor for invasive breast cancer. Results A total of 403 326 pairs of mammograms from 342 149 women were evaluated. There were no significant differences in breast density assessment in pairs consisting of one DM and one DBT examination (57 516 of 74 729 [77%]; κ = 0.64), two DM examinations (238 678 of 301 743 [79%]; κ = 0.67), and two DBT examinations (20 763 of 26 854 [77%]; κ = 0.65). Results were similar when restricting the analyses to pairs read by the same radiologist. The breast cancer HRs for breast density were similar for DM and DBT ( = .45 for interaction). The HRs for density acquired using DM and DBT, respectively, were 0.55 (95% CI: 0.49, 0.63) and 0.37 (95% CI: 0.21, 0.66) for almost entirely fat, 1.47 (95% CI: 1.37, 1.58) and 1.36 (95% CI: 1.02, 1.82) for heterogeneously dense, and 1.72 (95% CI: 1.54, 1.93) and 2.05 (95% CI: 1.25, 3.36) for extremely dense breasts. Conclusion Radiologist reporting of Breast Imaging Reporting and Data System density obtained with digital breast tomosynthesis did not differ from that obtained with digital mammography. © RSNA, 2021
ISSN:0033-8419
1527-1315
DOI:10.1148/radiol.2021204579