An app to classify a 5-year survival in patients with breast cancer using the convolutional neural networks (CNN) in Microsoft Excel: Development and usability study

Breast cancer (BC) is the most common malignant cancer in women. A predictive model is required to predict the 5-year survival in patients with BC (5YSPBC) and improve the treatment quality by increasing their survival rate. However, no reports in literature about apps developed and designed in medi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine (Baltimore) 2022-01, Vol.101 (4), p.e28697-e28697
Hauptverfasser: Lin, Cheng-Yao, Chien, Tsair-Wei, Chen, Yen-Hsun, Lee, Yen-Ling, Su, Shih-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast cancer (BC) is the most common malignant cancer in women. A predictive model is required to predict the 5-year survival in patients with BC (5YSPBC) and improve the treatment quality by increasing their survival rate. However, no reports in literature about apps developed and designed in medical practice to classify the 5YSPBC. This study aimed to build a model to develop an app for an automatically accurate classification of the 5YSPBC. A total of 1810 patients with BC were recruited in a hospital in Taiwan from the secondary data with codes on 53 characteristic variables that were endorsed by professional staff clerks as of December 31, 2019. Five models (i.e., revolution neural network [CNN], artificial neural network, Naïve Bayes, K-nearest Neighbors Algorithm, and Logistic regression) and 3 tasks (i.e., extraction of feature variables, model comparison in accuracy [ACC] and stability, and app development) were performed to achieve the goal of developing an app to predict the 5YSPBC. The sensitivity, specificity, and receiver operating characteristic curve (area under ROC curve) on models across 2 scenarios of training (70%) and testing (30%) sets were compared. An app predicting the 5YSPBC was developed involving the model estimated parameters for a website assessment. We observed that the 15-variable CNN model yields higher ACC rates (0.87 and 0.86) with area under ROC curves of 0.80 and 0.78 (95% confidence interval 0.78-82 and 0.74-81) based on 1357 training and 540 testing cases an available app for patients predicting the 5YSPBC was successfully developed and demonstrated in this study. The 15-variable CNN model with 38 parameters estimated using CNN for improving the ACC of the 5YSPBC has been particularly demonstrated in Microsoft Excel. An app developed for helping clinicians assess the 5YSPBC in clinical settings is required for application in the future.
ISSN:0025-7974
1536-5964
DOI:10.1097/MD.0000000000028697