Noninvasive and Point-of-Care Surface-Enhanced Raman Scattering (SERS)-Based Breathalyzer for Mass Screening of Coronavirus Disease 2019 (COVID-19) under 5 min
Population-wide surveillance of COVID-19 requires tests to be quick and accurate to minimize community transmissions. The detection of breath volatile organic compounds presents a promising option for COVID-19 surveillance but is currently limited by bulky instrumentation and inflexible analysis pro...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-02, Vol.16 (2), p.2629-2639 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Population-wide surveillance of COVID-19 requires tests to be quick and accurate to minimize community transmissions. The detection of breath volatile organic compounds presents a promising option for COVID-19 surveillance but is currently limited by bulky instrumentation and inflexible analysis protocol. Here, we design a hand-held surface-enhanced Raman scattering-based breathalyzer to identify COVID-19 infected individuals in under 5 min, achieving >95% sensitivity and specificity across 501 participants regardless of their displayed symptoms. Our SERS-based breathalyzer harnesses key variations in vibrational fingerprints arising from interactions between breath metabolites and multiple molecular receptors to establish a robust partial least-squares discriminant analysis model for high throughput classifications. Crucially, spectral regions influencing classification show strong corroboration with reported potential COVID-19 breath biomarkers, both through experiment and in silico. Our strategy strives to spur the development of next-generation, noninvasive human breath diagnostic toolkits tailored for mass screening purposes. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c09371 |