Bioinformatic Analysis Identifies Biomarkers and Treatment Targets in Primary Sjögren’s Syndrome Patients with Fatigue

We aim to identify the common genes, biological pathways, and treatment targets for primary Sjögren’s syndrome patients with varying degrees of fatigue features. We select datasets about transcriptomic analyses of primary Sjögren’s syndrome (pSS) patients with different degrees of fatigue features a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2022, Vol.2022 (1), p.7697558-7697558
Hauptverfasser: Chen, Guangshu, Che, Li, Cai, Xingdong, Zhu, Ping, Ran, Jianmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We aim to identify the common genes, biological pathways, and treatment targets for primary Sjögren’s syndrome patients with varying degrees of fatigue features. We select datasets about transcriptomic analyses of primary Sjögren’s syndrome (pSS) patients with different degrees of fatigue features and normal controls in peripheral blood. We identify common differentially expressed genes (DEGs) to find shared pathways and treatment targets for pSS patients with fatigue and design a protein-protein interaction (PPI) network by some practical bioinformatic tools. And hub genes are detected based on the PPI network. We perform biological pathway analysis of common genes by Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Lastly, potential treatment targets for pSS patients with fatigue are found by the Enrichr platform. We discovered that 27 DEGs are identified in pSS patients with fatigue features and the severe fatigued pSS-specific gene is RTP4. DEGs are mainly localized in the mitochondria, endosomes, endoplasmic reticulum, and cytoplasm and are involved in the biological process by which interferon acts on cells and cells defend themselves against viruses. Molecular functions mainly involve the process of RNA synthesis. The DEGs of pSS are involved in the signaling pathways of viruses such as hepatitis C, influenza A, measles, and EBV. Acetohexamide PC3 UP, suloctidil HL60 UP, prenylamine HL60 UP, and chlorophyllin CTD 00000324 are the four most polygenic drug molecules. PSS patients with fatigue features have specific gene regulation, and chlorophyllin may alleviate fatigue symptoms in pSS patients.
ISSN:2314-6133
2314-6141
DOI:10.1155/2022/7697558