Experimental Study of the Dynamic Characteristics of a New Antidrainage Subgrade Structure for High-Speed Railways in Diatomaceous Earth Areas

The experience needed to carry out engineering and construction in diatomaceous earth areas is currently lacking. This project studies the new Hang Shaotai high-speed railway passing through a diatomaceous earth area in Shengzhou, Zhejiang Province, and analyzes the hydrological and mechanical prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-01, Vol.15 (2), p.532
Hauptverfasser: Su, Qian, Deng, Zhixing, Wang, Xun, Jia, Wenyi, Niu, Yunbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The experience needed to carry out engineering and construction in diatomaceous earth areas is currently lacking. This project studies the new Hang Shaotai high-speed railway passing through a diatomaceous earth area in Shengzhou, Zhejiang Province, and analyzes the hydrological and mechanical properties of diatomaceous earth on the basis of a field survey and laboratory. Moreover, a new antidrainage subgrade structure was proposed to address the rainy local environment, and field excitation tests were performed to verify the antidrainage performance and stability of the new subgrade structure. Finally, the dynamic characteristics and deformation of the diatomaceous earth roadbed were examined. The hydrophysical properties of diatomaceous earth in the area are extremely poor, and the disintegration resistance index ranges from 3.1% to 9.0%. The antidrainage subgrade structure has good water resistance and stability under dynamic loading while submerged in water. After 700,000 loading cycles, the dynamic stress and vibration acceleration of the surface of the subgrade bed stabilized at approximately 6.37 kPa and 0.94 m/s , respectively. When the number of excitations reached 2 million, the settlement of the diatomaceous earth foundation was 0.08 mm, and there was basically negligible postwork settlement of the diatomaceous earth foundation. These results provide new insights for engineering construction in diatomaceous earth areas.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15020532