Fractional-Order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic

Goal: Coronavirus disease (COVID-19) is a contagious disease caused by a newly discovered coronavirus, initially identified in the mainland of China, late December 2019. COVID-19 has been confirmed as a higher infectious disease that can spread quickly in a community population depending on the numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of engineering in medicine and biology 2020-01, Vol.1, p.249-256
Hauptverfasser: Bahloul, Mohamed A., Chahid, Abderrazak, Laleg-Kirati, Taous-Meriem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Goal: Coronavirus disease (COVID-19) is a contagious disease caused by a newly discovered coronavirus, initially identified in the mainland of China, late December 2019. COVID-19 has been confirmed as a higher infectious disease that can spread quickly in a community population depending on the number of susceptible and infected cases and also depending on their movement in the community. Since January 2020, COVID-19 has reached out to many countries worldwide, and the number of daily cases remains to increase rapidly. Method: Several mathematical and statistical models have been developed to understand, track, and forecast the trend of the virus spread. Susceptible-Exposed-Infected-Quarantined-Recovered-Death-Insusceptible (SEIQRDP) model is one of the most promising epidemiological models that has been suggested for estimating the transmissibility of the COVID-19. In the present study, we propose a fractional-order SEIQRDP model to analyze the COVID-19 pandemic. In the recent decade, it has proven that many aspects in many domains can be described very successfully using fractional order differential equations. Accordingly, the Fractional-order paradigm offers a flexible, appropriate, and reliable framework for pandemic growth characterization. In fact, due to its non-locality properties, a fractional-order operator takes into consideration the variables' memory effect, and hence, it takes into account the sub-diffusion process of confirmed and recovered cases. Results-The validation of the studied fractional-order model using real COVID-19 data for different regions in China, Italy, and France show the potential of the proposed paradigm in predicting and understanding the pandemic dynamic. Conclusions: Fractional-order epidemiological models might play an important role in understanding and predicting the spread of the COVID-19, also providing relevant guidelines for controlling the pandemic.
ISSN:2644-1276
2644-1276
DOI:10.1109/OJEMB.2020.3019758