Screening for Inhibitors of Main Protease in SARS-CoV-2: In Silico and In Vitro Approach Avoiding Peptidyl Secondary Amides
In addition to vaccines, antiviral drugs are essential for suppressing COVID-19. Although several inhibitor candidates were reported for SARS-CoV-2 main protease, most are highly polar peptidomimetics with poor oral bioavailability and cell membrane permeability. Here, we conducted structure-based v...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2022-01, Vol.62 (2), p.350-358 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In addition to vaccines, antiviral drugs are essential for suppressing COVID-19. Although several inhibitor candidates were reported for SARS-CoV-2 main protease, most are highly polar peptidomimetics with poor oral bioavailability and cell membrane permeability. Here, we conducted structure-based virtual screening and in vitro assays to obtain hit compounds belonging to a new chemical space, excluding peptidyl secondary amides. In total, 180 compounds were subjected to the primary assay at 20 μM, and nine compounds with inhibition rates of >5% were obtained. The IC50 of six compounds was determined in dose–response experiments, with the values on the order of 10–4 M. Although nitro groups were enriched in the substructure of the hit compounds, they did not significantly contribute to the binding interaction in the predicted docking poses. Physicochemical properties prediction showed good oral absorption. These new scaffolds are promising candidates for future optimization. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.1c01087 |