Three human RNA polymerases interact with TFIIH via a common RPB6 subunit
Abstract In eukaryotes, three RNA polymerases (RNAPs) play essential roles in the synthesis of various types of RNA: namely, RNAPI for rRNA; RNAPII for mRNA and most snRNAs; and RNAPIII for tRNA and other small RNAs. All three RNAPs possess a short flexible tail derived from their common subunit RPB...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2022-01, Vol.50 (1), p.1-16 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
In eukaryotes, three RNA polymerases (RNAPs) play essential roles in the synthesis of various types of RNA: namely, RNAPI for rRNA; RNAPII for mRNA and most snRNAs; and RNAPIII for tRNA and other small RNAs. All three RNAPs possess a short flexible tail derived from their common subunit RPB6. However, the function of this shared N-terminal tail (NTT) is not clear. Here we show that NTT interacts with the PH domain (PH-D) of the p62 subunit of the general transcription/repair factor TFIIH, and present the structures of RPB6 unbound and bound to PH-D by nuclear magnetic resonance (NMR). Using available cryo-EM structures, we modelled the activated elongation complex of RNAPII bound to TFIIH. We also provide evidence that the recruitment of TFIIH to transcription sites through the p62–RPB6 interaction is a common mechanism for transcription-coupled nucleotide excision repair (TC-NER) of RNAPI- and RNAPII-transcribed genes. Moreover, point mutations in the RPB6 NTT cause a significant reduction in transcription of RNAPI-, RNAPII- and RNAPIII-transcribed genes. These and other results show that the p62–RPB6 interaction plays multiple roles in transcription, TC-NER, and cell proliferation, suggesting that TFIIH is engaged in all RNAP systems. |
---|---|
ISSN: | 0305-1048 1362-4962 1362-4962 |
DOI: | 10.1093/nar/gkab612 |