LINC00857 promotes the proliferation of pancreatic cancer via MET, STAT3, and CREB
Long non-coding RNA (lncRNA) LINC00857 promotes cell proliferation in various cancers and is overexpressed in pancreatic cancer (PC). However, the role of LINC00857 in PC is yet to be clarified. In this study, we used Gene Expression Profiling Interactive Analysis (GEPIA) to investigate transcriptio...
Gespeichert in:
Veröffentlicht in: | Journal of gastrointestinal oncology 2021-12, Vol.12 (6), p.2622-2630 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long non-coding RNA (lncRNA) LINC00857 promotes cell proliferation in various cancers and is overexpressed in pancreatic cancer (PC). However, the role of LINC00857 in PC is yet to be clarified.
In this study, we used Gene Expression Profiling Interactive Analysis (GEPIA) to investigate transcriptional data of LINC00857 in different cancers. We determined LINC00857 expression in 4 PC cell lines, and one normal pancreatic cell line by quantitative real-time reverse transcription PCR (qRT-PCR). small interfering RNA (siRNA) was employed to specifically knockdown LINC00857 in BxPc3 and PANC1 cells. Cell proliferation was evaluated using WST-1. Western blotting analysis was used to detect the expression levels of downstream proteins of LINC00857.
We revealed that the knockdown of LINC00857 in PC cell lines inhibited the proliferation of the PC cells. We found that LINC00857 downregulation was followed by the downregulation of oncogenic proteins mesenchymal-epithelial transition (MET), signal transducer and activator of transcription 3 (STAT3), and cAMP response element-binding protein (CREB).
Our study indicated that LINC00857 regulated the expression of STAT3 and CREB via regulating the expression of MET, and consequently promoted the growth of PC cells. The results allowed us to deepen our understanding of the pathogenesis of PC and provided a potential target for the clinical treatment of PC. |
---|---|
ISSN: | 2078-6891 2219-679X |
DOI: | 10.21037/jgo-21-723 |