Welding and Riveting Hybrid Bonding of 6061 Al and Carbon Fiber Reinforced Composites

Welding and riveting hybrid bonding technology was applied to join 6061 aluminum alloy and carbon fiber reinforced plastics (CFRP). The laser-arc hybrid welding process and stepped rivets were used in the experiments to reduce the impact of the poor heat resistance of composites. The effect of hybri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-12, Vol.14 (1), p.99
Hauptverfasser: Wang, Hongyang, Huang, Bin, Li, Jinzhu, Li, Nan, Liu, Liming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Welding and riveting hybrid bonding technology was applied to join 6061 aluminum alloy and carbon fiber reinforced plastics (CFRP). The laser-arc hybrid welding process and stepped rivets were used in the experiments to reduce the impact of the poor heat resistance of composites. The effect of hybrid welding arc current on the formation and mechanical properties of 6061 Al/CFRP joints was studied. Tensile shear load up to 4.65 kN was achieved by adjusting process parameters. The welding process and mode of the fracture were analyzed. The hybrid bonded joint obtained consisted of two parts: a welded joint of Al plate and Al rivet, and a bonded interface between Al plate and CFRP plate. The mechanical properties of the hybrid joint were mainly determined by the Al plate/Al rivet welded joint. The results of the study show that there are three interfacial bonding mechanisms between aluminum and CFRP. In addition to mechanical bonding between the Al plate and CFRP plate, there were also metallurgical bonding of Al-Mg intermetallic compounds with resin matrix and chemical reactions of aluminum with resin and carbon fibers at the interface, which could improve the mechanical properties of the joints.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14010099