Characteristics of the Surface Topography and Tribological Properties of Reinforced Aluminum Matrix Composite

Due to their excellent synergistic properties, Aluminum Matrix Composites (AMC) have achieved a high degree of prominence in different industries. In addition to strength, the wear resistance of materials is also an important criterion for numerous applications. The wear resistance depends on the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-01, Vol.15 (1), p.358
Hauptverfasser: Niemczewska-Wójcik, Magdalena, Pethuraj, Manickaraj, Uthayakumar, Marimuthu, Abdul Majid, Mohd Shukry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to their excellent synergistic properties, Aluminum Matrix Composites (AMC) have achieved a high degree of prominence in different industries. In addition to strength, the wear resistance of materials is also an important criterion for numerous applications. The wear resistance depends on the surface topography as well as the working conditions of the interacting parts. Therefore, extensive experiments are being conducted to improve the suitability of engineering materials (including AMC) for different applications. This paper presents research on manufactured aluminum metal matrix composites reinforced with 10 wt.% of Al SiO (aluminum sillimanite). The manufactured and prepared samples were subjected to surface topography measurements and to tribological studies both with and without lubricant using a block-on-ring tester. Based on the results, analyses of the surface topography (i.e., surface roughness parameters, Abbott-Firestone curve, and surface defects) as well as of the tribological characteristics (i.a. friction coefficient, linear wear, and wear intensity) were performed. Differences in the surface topography of the manufactured elements were shown. The surface topography had a significant impact on tribological characteristics of the sliding joints in the tests where lubrication was and was not used. Better tribological characteristics were obtained for the surfaces characterized by greater roughness (determined on the basis of both the profile and surface texture parameters). In the case of tribological tests with lubrication, the friction coefficient as well as the wear intensity was significantly lower compared to tribological tests without lubrication. However, lower values of the friction coefficient and wear intensity were still recorded for the surfaces that were characterized by greater roughness. The obtained results showed that it is important to analyze the surface topography because surface characteristics influence tribological properties.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15010358