Real-time digital polymerase chain reaction (PCR) as a novel technology improves limit of detection for rare allele assays

Tumor heterogeneity may lead to false negative test results for tissue biopsy-based companion diagnostic tests. Real-time polymerase chain reaction (PCR) and digital PCR assays are used to detect rare alleles in cell-free circulating DNA for liquid biopsies; however, those tests lack strong sensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational lung cancer research 2021-12, Vol.10 (12), p.4336-4352
Hauptverfasser: Xu, Jiachen, Duong, Kyra, Yang, Zhenlin, Kaji, Kavanaugh, Ou, Jiajia, Head, Steven R, Crynen, Gogce, Ordoukhanian, Phillip, Hanna, Lauren, Hanna, Ava, Wang, Yan, Wang, Zhijie, Wang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor heterogeneity may lead to false negative test results for tissue biopsy-based companion diagnostic tests. Real-time polymerase chain reaction (PCR) and digital PCR assays are used to detect rare alleles in cell-free circulating DNA for liquid biopsies; however, those tests lack strong sensitivity at low allele frequencies. We show here a novel real-time digital PCR instrument that utilizes cycle-based amplification curves to further improve the sensitivity and quantification accuracy of digital PCR. The novel real-time digital PCR instrument was compared to an endpoint digital PCR system to determine the sensitivity and quantification accuracy of both instruments. Samples were all thermal cycled on the real-time digital PCR instrument but were analyzed on both endpoint and real-time digital PCR instruments to compare the performance without introducing other variables. Contrived samples for epidermal growth factor receptor ( ) exon 19 deletion, T790M, and L858R point mutations as well as human epidermal growth factor receptor 2 ( ) amplification were tested. Different mutant allele frequencies and wildtype to mutant gene copy number ratios were tested for and , respectively. By removing false positive datapoints using real-time amplification curves, real-time digital PCR improved sensitivity by lowering the baseline for wildtype samples. For 19del assay, samples with 2 or more fluorescein amidite (FAM) labeled positive wells are determined positive by real-time digital PCR, while a minimum of 5 FAM positive datapoints is needed by endpoint digital PCR. Improved limit of detection for 19del mutation was also observed. Real-time digital PCR also had better quantification accuracy and sensitivity, resulting in the mutant allele frequencies being closer to the expected values for all mutations, especially at very low allele frequencies. However, at high allele frequencies or for gene amplification assays, real-time digital PCR is comparable with endpoint digital PCR. This novel technology with improved sensitivity is important and needed because it addresses current issues with liquid biopsy tests. Due to limited amounts of circulating tumor DNA (ctDNA) obtained for liquid biopsy tests, few copies of mutant alleles are expected. With the lower baseline of real-time digital PCR, false negative test results from tissue biopsy would be more effectively reduced, leading to more patients receiving the targeted therapy they need for better survival.
ISSN:2218-6751
2226-4477
DOI:10.21037/tlcr-21-728