A Comparative Photophysical Study of Structural Modifications of Thioflavin T‑Inspired Fluorophores

The benzothiazolium salt, Thioflavin T (ThT), has been widely adopted as the “gold-standard” fluorescent reporter of amyloid in vitro. Its properties as a molecular rotor result in a large-scale (∼1000-fold) fluorescence turn-on upon binding to β-sheets in amyloidogenic proteins. However, the comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-10, Vol.11 (19), p.8406-8416
Hauptverfasser: Needham, Lisa-Maria, Weber, Judith, Pearson, Colin M, Do, Dung T, Gorka, Felix, Lyu, Guanpeng, Bohndiek, Sarah E, Snaddon, Thomas N, Lee, Steven F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The benzothiazolium salt, Thioflavin T (ThT), has been widely adopted as the “gold-standard” fluorescent reporter of amyloid in vitro. Its properties as a molecular rotor result in a large-scale (∼1000-fold) fluorescence turn-on upon binding to β-sheets in amyloidogenic proteins. However, the complex photophysics of ThT combined with the intricate and varied nature of the amyloid binding motif means these interactions are poorly understood. To study this important class of fluorophores, we present a detailed photophysical characterization and comparison of a novel library of 12 ThT-inspired fluorescent probes for amyloid protein (PAPs), where both the charge and donor capacity of the heterocyclic and aminobenzene components have been interrogated, respectively. This enables direct photophysical juxtaposition of two structural groups: the neutral “PAP” (class 1) and the charged “mPAP” fluorophores (class 2). We quantify binding and optical properties at both the bulk and single-aggregate levels with some derivatives showing higher aggregate affinity and brightness than ThT. Finally, we demonstrate their abilities to perform super-resolution imaging of α-synuclein fibrils with localization precisions of ∼16 nm. The properties of the derivatives provide new insights into the relationship between chemical structure and function of benzothiazole probes.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.0c01549