Metabolite discovery through global annotation of untargeted metabolomics data

Liquid chromatography–high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2021-11, Vol.18 (11), p.1377-1385
Hauptverfasser: Chen, Li, Lu, Wenyun, Wang, Lin, Xing, Xi, Chen, Ziyang, Teng, Xin, Zeng, Xianfeng, Muscarella, Antonio D., Shen, Yihui, Cowan, Alexis, McReynolds, Melanie R., Kennedy, Brandon J., Lato, Ashley M., Campagna, Shawn R., Singh, Mona, Rabinowitz, Joshua D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquid chromatography–high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak–peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N -glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery. The NetID algorithm annotates untargeted LC-MS metabolomics data by combining known biochemical and metabolomic principles with a global network optimization strategy.
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-021-01303-3