The relative impact of evolving pleiotropy and mutational correlation on trait divergence

Abstract Both pleiotropic connectivity and mutational correlations can restrict the decoupling of traits under divergent selection, but it is unknown which is more important in trait evolution. To address this question, we create a model that permits within-population variation in both pleiotropic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2022-01, Vol.220 (1)
Hauptverfasser: Chebib, Jobran, Guillaume, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Both pleiotropic connectivity and mutational correlations can restrict the decoupling of traits under divergent selection, but it is unknown which is more important in trait evolution. To address this question, we create a model that permits within-population variation in both pleiotropic connectivity and mutational correlation, and compare their relative importance to trait evolution. Specifically, we developed an individual-based stochastic model where mutations can affect whether a locus affects a trait and the extent of mutational correlations in a population. We find that traits can decouple whether there is evolution in pleiotropic connectivity or mutational correlation, but when both can evolve, then evolution in pleiotropic connectivity is more likely to allow for decoupling to occur. The most common genotype found in this case is characterized by having one locus that maintains connectivity to all traits and another that loses connectivity to the traits under stabilizing selection (subfunctionalization). This genotype is favored because it allows the subfunctionalized locus to accumulate greater effect size alleles, contributing to increasingly divergent trait values in the traits under divergent selection without changing the trait values of the other traits (genetic modularization). These results provide evidence that partial subfunctionalization of pleiotropic loci may be a common mechanism of trait decoupling under regimes of corridor selection.
ISSN:1943-2631
0016-6731
1943-2631
DOI:10.1093/genetics/iyab205