Space-Resolved OH Vibrational Spectra of the Hydration Shell around CO2
The CO2 molecule is weakly bound in water. Here we analyze the influence of a dissolved CO2 molecule on the structure and OH vibrational spectra of the surrounding water. From the analysis of ab initio molecular dynamics simulations (BLYP-D3) we present static (structure, coordination, H-bonding, te...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2021-12, Vol.125 (51), p.13886-13895 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The CO2 molecule is weakly bound in water. Here we analyze the influence of a dissolved CO2 molecule on the structure and OH vibrational spectra of the surrounding water. From the analysis of ab initio molecular dynamics simulations (BLYP-D3) we present static (structure, coordination, H-bonding, tetrahedrality) and dynamical (OH vibrational spectra) properties of the water molecules as a function of distance from the solute. We find a weakly oscillatory variation (“ABBA”) in the ‘solution minus bulk water’ spectrum. The origin of these features can largely be traced back to solvent–solute hard-core interactions which lead to variations in density and tetrahedrality when moving from the solute’s vicinity out to the bulk region. The high-frequency peak in the solute-affected spectra is specifically analyzed and found to originate from both water OH groups that fulfill the geometric H-bond criteria, and from those that do not (dangling ones). Effectively, neither is hydrogen-bonded. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.1c06123 |