Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies

The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O₂ in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO₂ and H₂O....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-12, Vol.118 (52), p.1-10
Hauptverfasser: Bains, William, Petkowski, Janusz J., Rimmer, Paul B., Seager, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 52
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Bains, William
Petkowski, Janusz J.
Rimmer, Paul B.
Seager, Sara
description The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O₂ in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO₂ and H₂O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH₃), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH₃ dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO₂ as ammonium sulfite salts. This trapping of SO₂ in the clouds, together with the release of SO₂ below the clouds as the droplets settle out to higher temperatures, explains the vertical SO₂ abundance anomaly. A consequence of the presence of NH₃ is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH₃ is unknown but could involve biological production; if so, then the most energy-efficient NH₃-producing reaction also creates O₂, explaining the detection of O₂ in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.
doi_str_mv 10.1073/pnas.2110889118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8719887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27112765</jstor_id><sourcerecordid>27112765</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-2ba43d959642da3e49532c042c03444dc2273d76918662cc1b91e576cfdc9ead3</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMoTs_o2pUScOOmZvKqSrIRhkFHYUAX6jbcStJ22lTSJlWN_nvT9Ng-FpfAPV9OcjgIPaPkkhLJr3YJ6iWjlCilKVUP0IoSTbtBaPIQrQhhslOCiTN0XuuWEKJ7RR6jMy40J01Yoe3Hkt1i55ATzmsM05RTADzBN1_xF5-WGiBhG_PiKt7AGGYYo8eQHPY_dhFCqjiP1Ze9d0esi37vI7YbPwULsaF5ghh8fYIerSFW__T-vECf3775dPOuu_tw-_7m-q6DnrO5YyMI7nSvB8EccC90W1si2nAhhLOMSe7koKkaBmYtHTX1vRzs2lntwfEL9Prou1vGyTvr01wgml0JE5SfJkMw_yopbMzXvDdKUq2UbAav7g1K_r74OpspVOtjhOTzUg0bKONKtTcb-vI_dJuXklq8RjEiKJfiQF0dKVtyrcWvT5-hxBx6NIcezZ8e240Xf2c48b-La8DzI7Ctcy4nnUlKmRx6_gtWoaTY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620413746</pqid></control><display><type>article</type><title>Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bains, William ; Petkowski, Janusz J. ; Rimmer, Paul B. ; Seager, Sara</creator><creatorcontrib>Bains, William ; Petkowski, Janusz J. ; Rimmer, Paul B. ; Seager, Sara</creatorcontrib><description>The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O₂ in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO₂ and H₂O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH₃), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH₃ dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO₂ as ammonium sulfite salts. This trapping of SO₂ in the clouds, together with the release of SO₂ below the clouds as the droplets settle out to higher temperatures, explains the vertical SO₂ abundance anomaly. A consequence of the presence of NH₃ is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH₃ is unknown but could involve biological production; if so, then the most energy-efficient NH₃-producing reaction also creates O₂, explaining the detection of O₂ in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2110889118</identifier><identifier>PMID: 34930842</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abundance ; Ammonia ; Ammonium ; Ammonium salts ; Anomalies ; Atmospheric models ; Clouds ; Droplets ; Energy efficiency ; High temperature ; Hypotheses ; In situ measurement ; Physical Sciences ; Salts ; Semisolids ; Slurries ; Sulfite ; Sulfur dioxide ; Sulfuric acid ; Trapping ; Venus ; Venus atmosphere ; Venus clouds ; Venus probes</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-12, Vol.118 (52), p.1-10</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 28, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-2ba43d959642da3e49532c042c03444dc2273d76918662cc1b91e576cfdc9ead3</citedby><cites>FETCH-LOGICAL-a532t-2ba43d959642da3e49532c042c03444dc2273d76918662cc1b91e576cfdc9ead3</cites><orcidid>0000-0002-1921-4848 ; 0000-0002-7180-081X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27112765$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27112765$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34930842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bains, William</creatorcontrib><creatorcontrib>Petkowski, Janusz J.</creatorcontrib><creatorcontrib>Rimmer, Paul B.</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><title>Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O₂ in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO₂ and H₂O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH₃), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH₃ dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO₂ as ammonium sulfite salts. This trapping of SO₂ in the clouds, together with the release of SO₂ below the clouds as the droplets settle out to higher temperatures, explains the vertical SO₂ abundance anomaly. A consequence of the presence of NH₃ is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH₃ is unknown but could involve biological production; if so, then the most energy-efficient NH₃-producing reaction also creates O₂, explaining the detection of O₂ in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.</description><subject>Abundance</subject><subject>Ammonia</subject><subject>Ammonium</subject><subject>Ammonium salts</subject><subject>Anomalies</subject><subject>Atmospheric models</subject><subject>Clouds</subject><subject>Droplets</subject><subject>Energy efficiency</subject><subject>High temperature</subject><subject>Hypotheses</subject><subject>In situ measurement</subject><subject>Physical Sciences</subject><subject>Salts</subject><subject>Semisolids</subject><subject>Slurries</subject><subject>Sulfite</subject><subject>Sulfur dioxide</subject><subject>Sulfuric acid</subject><subject>Trapping</subject><subject>Venus</subject><subject>Venus atmosphere</subject><subject>Venus clouds</subject><subject>Venus probes</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUuLFDEUhYMoTs_o2pUScOOmZvKqSrIRhkFHYUAX6jbcStJ22lTSJlWN_nvT9Ng-FpfAPV9OcjgIPaPkkhLJr3YJ6iWjlCilKVUP0IoSTbtBaPIQrQhhslOCiTN0XuuWEKJ7RR6jMy40J01Yoe3Hkt1i55ATzmsM05RTADzBN1_xF5-WGiBhG_PiKt7AGGYYo8eQHPY_dhFCqjiP1Ze9d0esi37vI7YbPwULsaF5ghh8fYIerSFW__T-vECf3775dPOuu_tw-_7m-q6DnrO5YyMI7nSvB8EccC90W1si2nAhhLOMSe7koKkaBmYtHTX1vRzs2lntwfEL9Prou1vGyTvr01wgml0JE5SfJkMw_yopbMzXvDdKUq2UbAav7g1K_r74OpspVOtjhOTzUg0bKONKtTcb-vI_dJuXklq8RjEiKJfiQF0dKVtyrcWvT5-hxBx6NIcezZ8e240Xf2c48b-La8DzI7Ctcy4nnUlKmRx6_gtWoaTY</recordid><startdate>20211228</startdate><enddate>20211228</enddate><creator>Bains, William</creator><creator>Petkowski, Janusz J.</creator><creator>Rimmer, Paul B.</creator><creator>Seager, Sara</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1921-4848</orcidid><orcidid>https://orcid.org/0000-0002-7180-081X</orcidid></search><sort><creationdate>20211228</creationdate><title>Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies</title><author>Bains, William ; Petkowski, Janusz J. ; Rimmer, Paul B. ; Seager, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-2ba43d959642da3e49532c042c03444dc2273d76918662cc1b91e576cfdc9ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Ammonia</topic><topic>Ammonium</topic><topic>Ammonium salts</topic><topic>Anomalies</topic><topic>Atmospheric models</topic><topic>Clouds</topic><topic>Droplets</topic><topic>Energy efficiency</topic><topic>High temperature</topic><topic>Hypotheses</topic><topic>In situ measurement</topic><topic>Physical Sciences</topic><topic>Salts</topic><topic>Semisolids</topic><topic>Slurries</topic><topic>Sulfite</topic><topic>Sulfur dioxide</topic><topic>Sulfuric acid</topic><topic>Trapping</topic><topic>Venus</topic><topic>Venus atmosphere</topic><topic>Venus clouds</topic><topic>Venus probes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bains, William</creatorcontrib><creatorcontrib>Petkowski, Janusz J.</creatorcontrib><creatorcontrib>Rimmer, Paul B.</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bains, William</au><au>Petkowski, Janusz J.</au><au>Rimmer, Paul B.</au><au>Seager, Sara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-12-28</date><risdate>2021</risdate><volume>118</volume><issue>52</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O₂ in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO₂ and H₂O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH₃), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH₃ dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO₂ as ammonium sulfite salts. This trapping of SO₂ in the clouds, together with the release of SO₂ below the clouds as the droplets settle out to higher temperatures, explains the vertical SO₂ abundance anomaly. A consequence of the presence of NH₃ is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH₃ is unknown but could involve biological production; if so, then the most energy-efficient NH₃-producing reaction also creates O₂, explaining the detection of O₂ in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>34930842</pmid><doi>10.1073/pnas.2110889118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1921-4848</orcidid><orcidid>https://orcid.org/0000-0002-7180-081X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-12, Vol.118 (52), p.1-10
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8719887
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Abundance
Ammonia
Ammonium
Ammonium salts
Anomalies
Atmospheric models
Clouds
Droplets
Energy efficiency
High temperature
Hypotheses
In situ measurement
Physical Sciences
Salts
Semisolids
Slurries
Sulfite
Sulfur dioxide
Sulfuric acid
Trapping
Venus
Venus atmosphere
Venus clouds
Venus probes
title Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20ammonia%20makes%20Venusian%20clouds%20habitable%20and%20explains%20observed%20cloud-level%20chemical%20anomalies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bains,%20William&rft.date=2021-12-28&rft.volume=118&rft.issue=52&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2110889118&rft_dat=%3Cjstor_pubme%3E27112765%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620413746&rft_id=info:pmid/34930842&rft_jstor_id=27112765&rfr_iscdi=true