Production of ammonia makes Venusian clouds habitable and explains observed cloud-level chemical anomalies

The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O₂ in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO₂ and H₂O....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-12, Vol.118 (52), p.1-10
Hauptverfasser: Bains, William, Petkowski, Janusz J., Rimmer, Paul B., Seager, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O₂ in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO₂ and H₂O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH₃), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH₃ dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO₂ as ammonium sulfite salts. This trapping of SO₂ in the clouds, together with the release of SO₂ below the clouds as the droplets settle out to higher temperatures, explains the vertical SO₂ abundance anomaly. A consequence of the presence of NH₃ is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH₃ is unknown but could involve biological production; if so, then the most energy-efficient NH₃-producing reaction also creates O₂, explaining the detection of O₂ in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2110889118