Molecular Approach to Alkali-Metal Encapsulation by a Prussian Blue Analogue FeII/CoIII Cube in Aqueous Solution: A Kineticomechanistic Exchange Study

The preparation of a series of alkali-metal inclusion complexes of the molecular cube [{CoIII(Me3-tacn)}4{FeII(CN)6}4]4– (Me3-tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane), a mixed-valent Prussian Blue analogue bearing bridging cyanido ligands, has been achieved by following a redox-triggered self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2021-12, Vol.60 (23), p.18407-18422
Hauptverfasser: Gonzálvez, Miguel A, Bernhardt, Paul V, Font-Bardia, Mercè, Gallen, Albert, Jover, Jesús, Ferrer, Montserrat, Martínez, Manuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The preparation of a series of alkali-metal inclusion complexes of the molecular cube [{CoIII(Me3-tacn)}4{FeII(CN)6}4]4– (Me3-tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane), a mixed-valent Prussian Blue analogue bearing bridging cyanido ligands, has been achieved by following a redox-triggered self-assembly process. The molecular cubes are extremely robust and soluble in aqueous media ranging from 5 M [H+] to 2 M [OH–]. All the complexes have been characterized by the standard mass spectometry, UV–vis, inductively coupled plasma, multinuclear NMR spectroscopy, and electrochemistry. Furthermore, X-ray diffraction analysis of the sodium and lithium salts has also been achieved, and the inclusion of moieties of the form {M–OH2}+ (M = Li, Na) is confirmed. These inclusion complexes in aqueous solution are rather inert to cation exchange and are characterized by a significant decrease in acidity of the confined water molecule due to hydrogen bonding inside the cubic cage. Exchange of the encapsulated cationic {M–OH2}+ or M+ units by other alkali metals has also been studied from a kineticomechanistic perspective at different concentrations, temperatures, ionic strengths, and pressures. In all cases, the thermal and pressure activation parameters obtained agree with a process that is dominated by differences in hydration of the cations entering and exiting the cage, although the size of the portal enabling the exchange also plays a determinant role, thus not allowing the large Cs+ cation to enter. All the exchange substitutions studied follow a thermodynamic sequence that relates with the size and polarizing capability of the different alkali cations; even so, the process can be reversed, allowing the entry of {Li–OH2}+ units upon adsorption of the cube on an anion exchange resin and subsequent washing with a Li+ solution.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.1c03001