Superior Interaction of Electron Beam Irradiation with Carbon Nanotubes Added Polyvinyl Alcohol Composite System
This work was conducted to investigate the effect of carbon nanotube (CNT) on the mechanical-physico properties of the electron beam irradiated polyvinyl alcohol (PVOH) blends. The increasing of CNT amount up to 1.5 part per hundred resin (phr) has gradually improved tensile strength and Young'...
Gespeichert in:
Veröffentlicht in: | Polymers 2021-12, Vol.13 (24), p.4334 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work was conducted to investigate the effect of carbon nanotube (CNT) on the mechanical-physico properties of the electron beam irradiated polyvinyl alcohol (PVOH) blends. The increasing of CNT amount up to 1.5 part per hundred resin (phr) has gradually improved tensile strength and Young's modulus of PVOH/CNT nanocomposites due to effective interlocking effect of CNT particles in PVOH matrix, as evident in SEM observation. However, further increments of CNT, amounting up to 2 phr, has significantly decreased the tensile strength and Young's modulus of PVOH/CNT nanocomposits due to the CNT agglomeration at higher loading level. Irradiation was found to effectively improve the tensile strength of PVOH/CNT nanocomposites by inducing the interfacial adhesion effect between CNT particles and PVOH matrix. This was further verified by the decrement values of d-spacing of the deflection peak. The increasing of CNT amounts from 0.5 phr to 1 phr has marginally induced the wavenumber of O-H stretching, which indicates the weakening of hydrogen bonding in PVOH matrix. However, further increase in CNT amounts up to 2 phr was observed to reduce the wavenumber of O-H stretching due to poor interaction effect between CNT and PVOH matrix. Electron beam irradiation was found to induce the melting temperature of all PVOH/CNT nanocomposite by inducing the crosslinked networks. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym13244334 |