The combination of Al2O3 and BN for enhancing the thermal conductivity of PA12 composites prepared by selective laser sintering

A powder-based 3D printing technology, selective laser sintering (SLS), is a novel strategy of manufacturing complex components with specially tailored properties, including mechanical properties, as well as thermal and electrical conductivity. In this study, the effect of incorporating Al2O3 partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2021-01, Vol.11 (4), p.1984-1991
Hauptverfasser: Yuan, Yue, Wu, Wei, Hu, Huanbo, Liu, Dongmei, Shen, Hui, Wang, Zhengyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A powder-based 3D printing technology, selective laser sintering (SLS), is a novel strategy of manufacturing complex components with specially tailored properties, including mechanical properties, as well as thermal and electrical conductivity. In this study, the effect of incorporating Al2O3 particles and BN plates on the thermal conductivity of PA12 composites was investigated. PA12 composite powders, which can be well applied to SLS, were prepared via a two-step approach to mixing. Morphology characteristics demonstrated that the fillers dispersed uniformly in the PA12 matrix, as expected. With 35 wt% Al2O3 and 15 wt% BN hybrid fillers, the tensile strength had the potential to reach 25.7 MPa, while the thermal conductivity could reach 1.05 W m−1 K−1, 275% higher than that of pure PA12. In addition, the study investigated the effects of filler content on the thermal stability and mechanical properties whilst analysing the melting and crystallisation behaviours of SLS components. The results demonstrate that these composites have favourable thermal stability and exhibit no severe deterioration in mechanical properties. The PA12 composites prepared in this work therefore illustrated vast potential in thermal management materials.
ISSN:2046-2069
DOI:10.1039/d0ra09775f