Expression Profile Analysis and Image Observation of miRNA in Serum of Patients with Obstructive Sleep Apnea-Hypopnea Syndrome

The expression profile and image observation of miRNA in serum of patients with obstructive sleep apnea-hypopnea syndrome were investigated. Bioinformatics methods were used to explore the molecular mechanism of obstructive sleep apnea-hypopnea syndrome (OSAHS)-related hypertension and explore the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contrast media and molecular imaging 2021-12, Vol.2021, p.9731502-7
Hauptverfasser: Shao, Haiyan, Shen, Peihong, Chen, Junfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expression profile and image observation of miRNA in serum of patients with obstructive sleep apnea-hypopnea syndrome were investigated. Bioinformatics methods were used to explore the molecular mechanism of obstructive sleep apnea-hypopnea syndrome (OSAHS)-related hypertension and explore the differentially expressed core miRNAs and regulatory factors, providing a theoretical basis for seeking molecular targets for clinical diagnosis and treatment. The miRNA datasets of patients with OSAHS and those with hypertension were downloaded from the public database to obtain differentially expressed miRNAs and explore the biological processes and pathways involved in the target genes. The core miRNAs and competitive endogenous RNA (ceRNA) transcription factors (TFs) were obtained by database mining and Cytoscape network analysis. The results showed that 2,579 differentially expressed miRNAs were obtained from the GSE112093 dataset. Seven upregulated miRNAs (hsa-miR-7107-5p, hsa-miR-7110-5p, hsa-miR-595, hsa-miR-1268b, hsa-miR-3064-5p, hsa-miR-68565p, and hsa-miR-1180-3p) and one downregulated miRNA (hsa-miR-22-3p) were obtained from the GSE112093 dataset. It is proved that hsa-miR-22-3p, hsa-miR-595, hsa-miR-6856-5pKcnq1ot1, neat1, Tsix, ERG, kdm2b, and Runx1 may be involved in the pathogenesis of OSAHS-related hypertension, which provided a theoretical basis for the mechanism research and clinical treatment of OSAHS.
ISSN:1555-4309
1555-4317
DOI:10.1155/2021/9731502