Stress-induced generalization of negative memories is mediated by an extended hippocampal circuit

Memories of negative experiences exert important control of behavior in the face of actual or anticipated threat. Sometimes, however, this control extends to non-threatening situations, a phenomenon known as overgeneralization of negative memories. Overgeneralization is a reliable cognitive phenotyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2022-01, Vol.47 (2), p.516-523
Hauptverfasser: Ren, Lynn Y, Meyer, Mariah A A, Grayson, Viktoriya S, Gao, Pan, Guedea, Anita L, Radulovic, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Memories of negative experiences exert important control of behavior in the face of actual or anticipated threat. Sometimes, however, this control extends to non-threatening situations, a phenomenon known as overgeneralization of negative memories. Overgeneralization is a reliable cognitive phenotype of major depressive disorder, generalized anxiety disorder, and post-traumatic stress disorder. We therefore sought to develop an animal model to study stress-induced generalization of negative memories (SIG) and determine its dependence on the episodic-like memory circuit. We found that male and female mice, which were trained to differentiate a threatening from neutral context, exhibited robust SIG in response to subsequent social stress. Using chemogenetic circuit manipulations during memory retrieval, we demonstrated that both excitatory afferents to the dorsal hippocampus (DH) from the ventral tegmental area (VTA), and excitatory efferents from the DH to the retrosplenial cortex (RSC) contribute to SIG. Based on the known roles of these projections, we suggest that (1) by targeting subcortical VTA circuits that provide valence signals to the DH, stress prioritizes the retrieval of negative over neutral memories, and (2) by forwarding such information to the RSC, stress engages cortical mechanisms that support the retrieval of general relative to specific memory features. Altogether, these results suggest that various components of the extended hippocampal circuit can serve as treatment targets for memory overgeneralization.
ISSN:0893-133X
1740-634X
DOI:10.1038/s41386-021-01174-4