Langevin Equations with Generalized Proportional Hadamard–Caputo Fractional Derivative

We look at fractional Langevin equations (FLEs) with generalized proportional Hadamard–Caputo derivative of different orders. Moreover, nonlocal integrals and nonperiodic boundary conditions are considered in this paper. For the proposed equations, the Hyres–Ulam (HU) stability, existence, and uniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2021, Vol.2021 (1), p.6316477-6316477
Hauptverfasser: Barakat, M. A., Soliman, Ahmed H., Hyder, Abd-Allah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We look at fractional Langevin equations (FLEs) with generalized proportional Hadamard–Caputo derivative of different orders. Moreover, nonlocal integrals and nonperiodic boundary conditions are considered in this paper. For the proposed equations, the Hyres–Ulam (HU) stability, existence, and uniqueness (EU) of the solution are defined and investigated. In implementing our results, we rely on two important theories that are Krasnoselskii fixed point theorem and Banach contraction principle. Also, an application example is given to bolster the accuracy of the acquired results.
ISSN:1687-5265
1687-5273
DOI:10.1155/2021/6316477