Neuroserpin and transthyretin are extracellular chaperones that preferentially inhibit amyloid formation
Neuroserpin is a secreted protease inhibitor known to inhibit amyloid formation by the Alzheimer’s beta peptide (Aβ). To test whether this effect was constrained to Aβ, we used a range of in vitro assays to demonstrate that neuroserpin inhibits amyloid formation by several different proteins and pro...
Gespeichert in:
Veröffentlicht in: | Science advances 2021-12, Vol.7 (50), p.eabf7606-eabf7606 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuroserpin is a secreted protease inhibitor known to inhibit amyloid formation by the Alzheimer’s beta peptide (Aβ). To test whether this effect was constrained to Aβ, we used a range of in vitro assays to demonstrate that neuroserpin inhibits amyloid formation by several different proteins and protects against the associated cytotoxicity but, unlike other known chaperones, has a poor ability to inhibit amorphous protein aggregation. Collectively, these results suggest that neuroserpin has an unusual chaperone selectivity for intermediates on the amyloid-forming pathway. Bioinformatics analyses identified a highly conserved 14-residue region containing an α helix shared between neuroserpin and the thyroxine-transport protein transthyretin, and we subsequently demonstrated that transthyretin also preferentially inhibits amyloid formation. Last, we used rationally designed neuroserpin mutants to demonstrate a direct involvement of the conserved 14-mer region in its chaperone activity. Identification of this conserved region may prove useful in the future design of anti-amyloid reagents. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.abf7606 |