Corrections of photon beam profiles of small fields measured with ionization chambers using a three‐layer neural network

The purpose of this work is to study the feasibility of photon beam profile deconvolution using a feedforward neural network (NN) in very small fields (down to 0.56 × 0.56 cm2). The method's independence of the delivery and scanning system is also investigated. Lateral beam profiles of photon f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Clinical Medical Physics 2021-12, Vol.22 (12), p.64-71
Hauptverfasser: Schönfeld, Ann‐Britt, Mund, Karl, Yan, Guanghua, Schönfeld, Andreas Alexander, Looe, Hui Khee, Poppe, Björn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this work is to study the feasibility of photon beam profile deconvolution using a feedforward neural network (NN) in very small fields (down to 0.56 × 0.56 cm2). The method's independence of the delivery and scanning system is also investigated. Lateral beam profiles of photon fields between 0.56 × 0.56 cm2 and 4.03 × 4.03 cm2 were collected on a Siemens Artiste linear accelerator. Three scanning ionization chambers (SNC 125c, PTW 31021, and PTW 31022) of sensitive volumes ranging from 0.016 cm3 to 0.108 cm3 were used with a PTW MP3 water phantom. A reference dataset was also collected with a PTW 60019 microDiamond detector to train and test individual NNs for each ionization chamber. Further testing of the trained NNs was performed with additional test data collected on an Elekta Synergy linear accelerator using a Sun Nuclear 3D Scanner. The results were evaluated with a 1D gamma analysis (0.5 mm/0.5%). After the deconvolution, the gamma passing rates increased from 54.79% to 99.58% for the SNC 125c, from 57.09% to 99.83% for the PTW 31021, and from 91.03% to 96.36% for the PTW 31022. The delivery system, the scanning system, the scanning mode (continuous vs. step‐by‐step), and the electrometer had no significant influence on the results. This study successfully demonstrated the feasibility of using NN to correct the beam profiles of very small photon fields collected with ionization chambers of various sizes. Its independence of the delivery and scanning system was also shown.
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.13447