High Refractive Index Silica-Titania Films Fabricated via the Sol–Gel Method and Dip-Coating Technique—Physical and Chemical Characterization

Crack-free binary SiOx:TiOy composite films with the refractive index of ~1.94 at wavelength 632.8 nm were fabricated on soda-lime glass substrates, using the sol–gel method and dip-coating technique. With the use of transmission spectrophotometry and Tauc method, the energy of the optical band gap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-11, Vol.14 (23), p.7125
Hauptverfasser: Zięba, Magdalena, Wojtasik, Katarzyna, Tyszkiewicz, Cuma, Gondek, Ewa, Nizioł, Jacek, Suchanek, Katarzyna, Wojtasik, Michał, Pakieła, Wojciech, Karasiński, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crack-free binary SiOx:TiOy composite films with the refractive index of ~1.94 at wavelength 632.8 nm were fabricated on soda-lime glass substrates, using the sol–gel method and dip-coating technique. With the use of transmission spectrophotometry and Tauc method, the energy of the optical band gap of 3.6 eV and 4.0 eV were determined for indirect and direct optical allowed transitions, respectively. Using the reflectance spectrophotometry method, optical homogeneity of SiOx:TiOy composite films was confirmed. The complex refractive index determined by spectroscopic ellipsometry confirmed good transmission properties of the developed SiOx:TiOy films in the Vis-NIR spectral range. The surface morphology of the SiOx:TiOy films by atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods demonstrated their high smoothness, with the root mean square roughness at the level of ~0.15 nm. Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy were used to investigate the chemical properties of the SiOx:TiOy material. The developed binary composite films SiOx:TiOy demonstrate good waveguide properties, for which optical losses of 1.1 dB/cm and 2.7 dB/cm were determined, for fundamental TM0 and TE0 modes, respectively.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14237125