Tuning Catalytic Bias of Hydrogen Gas Producing Hydrogenases

Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron–sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of American Ceramic Society 2020-01, Vol.142 (3), p.1227-1235
Hauptverfasser: Artz, Jacob H, Zadvornyy, Oleg A, Mulder, David W, Keable, Stephen M, Cohen, Aina E, Ratzloff, Michael W, Williams, S. Garrett, Ginovska, Bojana, Kumar, Neeraj, Song, Jinhu, McPhillips, Scott E, Davidson, Catherine M, Lyubimov, Artem Y, Pence, Natasha, Schut, Gerrit J, Jones, Anne K, Soltis, S. Michael, Adams, Michael W. W, Raugei, Simone, King, Paul W, Peters, John W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron–sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in “catalytic bias” by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.9b08756