Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits
In vivo optogenetic strategies have redefined our ability to assay how neural circuits govern behavior. Although acutely implanted optical fibers have previously been used in such studies, long-term control over neuronal activity has been largely unachievable. Here we describe a method to construct...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2012-01, Vol.7 (1), p.12-23 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In vivo
optogenetic strategies have redefined our ability to assay how neural circuits govern behavior. Although acutely implanted optical fibers have previously been used in such studies, long-term control over neuronal activity has been largely unachievable. Here we describe a method to construct implantable optical fibers to readily manipulate neural circuit elements with minimal tissue damage or change in light output over time (weeks to months). Implanted optical fibers readily interface with
in vivo
electrophysiological arrays or electrochemical detection electrodes. The procedure described here, from implant construction to the start of behavioral experimentation, can be completed in approximately 2–6 weeks. Successful use of implantable optical fibers will allow for long-term control of mammalian neural circuits
in vivo
, which is integral to the study of the neurobiology of behavior. |
---|---|
ISSN: | 1754-2189 1750-2799 |
DOI: | 10.1038/nprot.2011.413 |