Decreased Cyclic Guanosine Monophosphate-Protein Kinase G Signaling Impairs Angiogenesis in a Lamb Model of Persistent Pulmonary Hypertension of the Newborn
Impaired angiogenesis function in pulmonary artery endothelial cells (PAEC) contributes to persistent pulmonary hypertension of the newborn (PPHN). Decreased nitric oxide (NO) amounts in PPHN lead to impaired mitochondrial biogenesis and angiogenesis in the lung; the mechanisms remain unclear. We hy...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory cell and molecular biology 2021-11, Vol.65 (5), p.555-567 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Impaired angiogenesis function in pulmonary artery endothelial cells (PAEC) contributes to persistent pulmonary hypertension of the newborn (PPHN). Decreased nitric oxide (NO) amounts in PPHN lead to impaired mitochondrial biogenesis and angiogenesis in the lung; the mechanisms remain unclear. We hypothesized that decreased cyclic guanosine monophosphate (cGMP)-PKG (protein kinase G) signaling downstream of NO leads to decreased mitochondrial biogenesis and angiogenesis in PPHN. PPHN was induced by ductus arteriosus constriction from 128-136 days' gestation in fetal lambs. Control animals were gestation-matched lambs that did not undergo ductal constriction. PAEC isolated from PPHN lambs were treated with the sGC (soluble guanylate cyclase) activator cinaciguat, the PKG activator 8-bromo-cGMP, or the PDE-V (PDE type V) inhibitor sildenafil. Lysates were immunoblotted for mitochondrial transcription factors and electron transport chain C-I (complex I), C-II, C-III, C-IV, and C-V proteins. The
angiogenesis of PAEC was evaluated by using tube-formation and scratch-recovery assays. cGMP concentrations were measured by using an enzyme immunoassay. Fetal lambs with ductal constriction were given sildenafil or control saline through continuous infusion
, and the lung histology, capillary counts, vessel density, and right ventricular pressure were assessed at birth. PPHN PAEC showed decreased mitochondrial transcription factor levels, electron transport chain protein levels, and
tube formation and cell migration; these were restored by cinaciguat, 8-bromo-cGMP, and sildenafil. Cinaciguat and sildenafil increased cGMP concentrations in PPHN PAEC. Radial alveolar and capillary counts and vessel density were lower in PPHN lungs, and the right ventricular pressure and Fulton Index were higher in PPHN lungs; these were improved by
sildenafil infusion. cGMP-PKG signaling is a potential therapeutic target to restore decreased mitochondrial biogenesis and angiogenesis in PPHN. |
---|---|
ISSN: | 1044-1549 1535-4989 |
DOI: | 10.1165/rcmb.2020-0434OC |