Single-Cell Profiling Reveals Metabolic Reprogramming as a Resistance Mechanism in BRAF -Mutated Multiple Myeloma
Although remarkably effective in some patients, precision medicine typically induces only transient responses despite initial absence of resistance-conferring mutations. Using -mutated myeloma as a model for resistance to precision medicine we investigated if mutated cancer cells have the ability to...
Gespeichert in:
Veröffentlicht in: | Clinical cancer research 2021-12, Vol.27 (23), p.6432-6444 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although remarkably effective in some patients, precision medicine typically induces only transient responses despite initial absence of resistance-conferring mutations. Using
-mutated myeloma as a model for resistance to precision medicine we investigated if
mutated cancer cells have the ability to ensure their survival by rapidly adapting to BRAF inhibitor treatment.
Full-length single-cell RNA (scRNA) sequencing (scRNA-seq) was conducted on 3 patients with
-mutated myeloma and 1 healthy donor. We sequenced 1,495 cells before, after 1 week, and at clinical relapse to BRAF/MEK inhibitor treatment. We developed an
model of dabrafenib resistance using genetically homogeneous single-cell clones from two cell lines with established
mutations (U266, DP6). Transcriptional and epigenetic adaptation in resistant cells were defined by RNA-seq and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq). Mitochondrial metabolism was characterized by metabolic flux analysis.
Profiling by scRNA-seq revealed rapid cellular state changes in response to BRAF/MEK inhibition in patients with myeloma and cell lines. Transcriptional adaptation preceded detectable outgrowth of genetically discernible drug-resistant clones and was associated with widespread enhancer remodeling. As a dominant vulnerability, dependency on oxidative phosphorylation (OxPhos) was induced. In treated individuals, OxPhos was activated at the time of relapse and showed inverse correlation to MAPK activation. Metabolic flux analysis confirmed OxPhos as a preferential energetic resource of drug-persistent myeloma cells.
This study demonstrates that cancer cells have the ability to rapidly adapt to precision treatments through transcriptional state changes, epigenetic adaptation, and metabolic rewiring, thus facilitating the development of refractory disease while simultaneously exposing novel vulnerabilities. |
---|---|
ISSN: | 1078-0432 1557-3265 |
DOI: | 10.1158/1078-0432.CCR-21-2040 |