Molecular diagnosis of maturity onset diabetes of the young in Iranian patients: improving management

Background The purpose of this study is to identify the mutations of the most common form of maturity-onset diabetes of the young (MODY), also known as MODY3, in diabetic patients suspected of MODY. This can recommend appropriate medical surveillance of at-risk family members of MODY based on the ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of diabetes and metabolic disorders 2021-12, Vol.20 (2), p.1369-1374
Hauptverfasser: Davoudi, Fatemeh, Aminzadeh, Majid, Shahbazian, Hajiye Bibi, Bijanzadeh, Mahdi, Ghadiri, Ata A., Ghandil, Pegah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background The purpose of this study is to identify the mutations of the most common form of maturity-onset diabetes of the young (MODY), also known as MODY3, in diabetic patients suspected of MODY. This can recommend appropriate medical surveillance of at-risk family members of MODY based on the genetic cause. Methods We analyzed the clinical course of 19 patients from 12 unrelated Iranian families with diabetes features. The coding regions and intron–exon boundaries of the hepatocyte nuclear factor 1 alpha (HNF1A) gene were studied by polymerase chain reaction (PCR) and sanger sequencing. Also, the detected mutation was analyzed by bioinformatics tools. Results One novel frameshift insertion mutation (p.Glu11Argfs*12) was detected in one of the probands and seven other patients of her family with the heterozygote state. The mutation is located in the exon1 of the dimerization domain of the HNF1A gene. According to the In Silico analysis, the detected mutation is predicted as a pathogenic one. Conclusions Differential diagnosis between MODY3 and other forms of diabetes can be considered a necessity in terms of overlapping symptoms of MODY3 with type1 or 2 diabetes. Molecular genetic testing can provide an accurate diagnosis for optimal management.
ISSN:2251-6581
2251-6581
DOI:10.1007/s40200-021-00870-8