Pathogenic variants of meiotic double strand break (DSB) formation genes PRDM9 and ANKRD31 in premature ovarian insufficiency

Purpose The etiology of premature ovarian insufficiency (POI) is heterogeneous, and genetic factors account for 20–25% of the patients. The primordial follicle pool is determined by the meiosis process, which is initiated by programmed DNA double strand breaks (DSB) and homologous recombination. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics in medicine 2021-12, Vol.23 (12), p.2309-2315
Hauptverfasser: Wang, Yiyang, Guo, Ting, Ke, Hanni, Zhang, Qian, Li, Shan, Luo, Wei, Qin, Yingying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The etiology of premature ovarian insufficiency (POI) is heterogeneous, and genetic factors account for 20–25% of the patients. The primordial follicle pool is determined by the meiosis process, which is initiated by programmed DNA double strand breaks (DSB) and homologous recombination. The objective of the study is to explore the role of DSB formation genes in POI pathogenesis. Methods Variants in DSB formation genes were analyzed from a database of exome sequencing in 1,030 patients with POI. The pathogenic effects of the potentially causative variants were verified by further functional studies. Results Three pathogenic heterozygous variants in PRDM9 and two in ANKRD31 were identified in seven patients. Functional studies showed the variants in PRDM9 impaired its methyltransferase activity, and the ANKRD31 variations disturbed its interaction with another DSB formation factor REC114 by haploinsufficiency effect, indicating the pathogenic effects of the two genes on ovarian function were dosage dependent. Conclusion Our study identified pathogenic variants of PRDM9 and ANKRD31 in POI patients, shedding new light on the contribution of meiotic DSB formation genes in ovarian development, further expanding the genetic architecture of POI.
ISSN:1098-3600
1530-0366
DOI:10.1038/s41436-021-01266-y